arXiv:2206.11974v1 [cs.CR] 23 Jun 2022

Keep Your Transactions On Short Leashes

or
Anchoring For Stability In A Multiverse of Block Tree Madness

Bennet Yee
Oasis Labs

Jun 2, 2022

Abstract

The adversary’s goal in mounting Long Range Attacks
(LRAS) is to fool potential victims into using and relying
on a side chain, i.e., a false, alternate history of transac-
tions, and into proposing transactions that end up harming
themselves or others. Previous research work on LRAs on
blockchain systems have used, at a high level, one of two
approaches. They either try to (1) prevent the creation of
a bogus side chain or (2) make it possible to distinguish
such a side chain from the main consensus chain.

In this paper, we take a different approach. We start with
the indistinguishability of side chains from the consensus
chain—for the eclipsed victim—as a given and assume the
potential victim will be fooled. Instead, we protect the vic-
tim via harm reduction applying “short leashes” to trans-
actions. The leashes prevent transactions from being used
in the wrong context.

The primary contribution of this paper is the design and
analysis of leashes. A secondary contribution is the care-
ful explication of the LRA threat model in the context of
BAR fault tolerance, and using it to analyze related work
to identify their limitations.

1 Introduction

I

Smart contract blockchain systems aspire to be reli-
able computing—and economic—infrastructure that can
be trusted to operate for a long time. One concern ex-
pressed in the literature is the class of so-called Long
Range Attacks (LRAs) [6} 13/ [10].

LRAs are a form of “alternate history attacks.” The goal
of the adversary is to convince a victim to act based on

This paper was built from I&TEX source at git hash 692d36606a22-
19€9d6£c790b2dc007c29fab190f.

transactions logged to a side chain—a history of an alter-
native, fictional universe—rather than on those logged on
the global consensus chain.

All LRAs are easily prevented on BFT-based, instant-
finality, Proof-of-Stake (PoS) blockchains like the Oasis
network [23]]. As long as the users are following the
blockchain’s evolution as a “light client”, they will know
the correct global consensus state. A light client contin-
uously monitors block production and tracks the consen-
sus protocol, verifying the metadata that pertains to con-
sensus: checking the basic block structure of new blocks,
including changes in consensus committee membership
(who can sign new blocks), without validating the “pay-
load” portion. Here by “payload” data we mean the por-
tion that contains the details about the evolution of the
smart contract virtual machine state—transaction parame-
ters, state root hashes, etc. Light clients do not maintain a
copy of smart contract persistent storage state—that would
be expensive—and thus cannot verify the state root in the
consensus blocks actually represents the result of transac-
tion execution from the previous state; all they can verify
is that the validation committee reached consensus on the
blocks and that changes to the validation committee are
themselves consensus driven.

While being able to act as light client is sufficient for pre-
venting LRAs, it is not necessary. Even if an intended vic-
tim cannot themselves be a light client, as long as they can
trust m out of n others who are light clients and can query
them for what they believe to be the current blockchain
state, that suffices to learn the true current consensus state,
given proper selections of the m and n security (and avail-
ability) parameters.

When LRA targets cannot communicate to directly or
indirectly learn about the blockchain’s evolution, however,
they are said to be “eclipsed”; protecting eclipsed targets
seems particularly difficult. Other research in the LRA lit-

erature have attempted to prevent the creation of side chain
or somehow make them detectable, and these approaches
have serious practical limitations. Instead, this paper takes
the approach of minimizing the harm that might occur
when a LRA victim is fooled into signing new transac-
tion proposals. We call our design a “short leash,” since
it essentially prevents a transaction from doing anything
outside a short “range” of an identified blockchain state.

Next, we first more precisely state the threat model. In
Section[3] we explain short leashes in detail and show how
they can be used to address posterior corruption / LRAs.
Following this, in Section [we discuss other approaches
to address LRAs and other related work. We provide some
concluding remarks in Section 5]

2 Threat Model

In this paper, we focus on the situations where gaining
trustworthy information about the blockchain is impossi-
ble, i.e., where a victim is eclipsed so the adversary has
full control over what messages can get through [[16]. We
first describe the LRA posterior corruption setting. Next,
we specify the security model, detailing what assumptions
are made and clearly stating what the adversary is allowed
(and not allowed) to do.

2.1 Terminology / Setting

Informally, the blockchain participant victim, whom we’ll
call Alice Van Winkle (A), has been inactive or asleep and
does not know what is the current state of the blockchain—
or necessarily even know how much time has elapsed.
Furthermore, the adversary, Dom Cobb (C), has the abil-
ity to control Alice’s (network) communications, deciding
on which messages are blocked and which are allowed
through.

Additionally, because the PoS blockchain operates for a
long time, there will be past participants who have exited
the ecosystem. They have nothing at stake, and would not
put any effort into protecting their old keys—and may even
sell them. Thus, keys belonging to some participants, in-
cluding a super-threshold number of validators who served
together in a past committee, will be cheaply available
to the adversary. This means that Cobb is able to sign
and forge blocks to create a side chain that forks from
the blocks added when that validation committee was ac-
tive. Alice, having recently awaken and also eclipsed, had
not been keeping track of consensus state, would find this
side-chain indistinguishable from the consensus chain and
would happily accept it. These kind of attack is also re-

ferred to as “posterior corruption”, where history is (appar-
ently) changed after the fact.

While Alice remembers what she knew before going to
sleep and may have trusted others then, there is no other
parties whom Alice trusts after waking—she is only will-
ing to trust the protocol design and implementation, since
any other parties may have exited and sold their signature
keys since she fell asleep. Note that there is no require-
ment that Alice only wakes up once or that Cobb only
forge blocks once; as with cryptanalytic attacks, he can
be an adaptive adversary, e.g., creating bogus history in
phases in attempting to get her to take more risks each
time.

How can the newly awaken Alice learn the true cur-
rent state of the blockchain based only on what messages
Cobb allows through and her knowledge of the state of the
blockchain at the time that she went to sleep?

This is quite daunting.

While we are mainly concerned with Proof-of-Stake
(PoS) chains, this is a problem for Proof-of-Work (PoW)
blockchains too. Here, creating a sidechain is “easy”:
Cobb just needs hashing power. Normally, the security as-
sumption for PoW blockchains is that adversaries cannot
acquire more than 50% of global hashing power, and all
participants rely on the longest chain rule to determine
what is consensus transaction history. However, Alice be-
ing recently awakened and fully eclipsed means that Cobb
can prevent her from seeing any blocks from the consensus
or main chain added after she went to sleep. And not know-
ing the elapsed time (with estimated block production rate),
she has no basis to guess what block height might be con-
sidered normal and what might be suspicious. The notion
of “longest” is a property that requires global knowledge,
and being eclipsed prevent her from acquiring information
that might distinguish a shorter side chain from the main
chain.

Note that Cobb can create an alternate history divert-
ing from the true consensus log at any point after the last
block Alice saw before sleeping. It is easier for him to
do so as far back in time as possible for common PoW
blockchains—right at the genesis block, if she only knows
about the system design, has the software, and the system
configuration parameters such as the genesis block, but has
not tracked the chain history at all. This is because typical
configurations of the hash parameters make it easier to cre-
ate blocks when the chain height is low, and block creation
becomes harder as the chain gets longer.

On PoS blockchains, building an alternate history that
an eclipsed individual would accept require getting a quo-
rum of validator signatures on the alternate history blocks.
The long-range aspect can greatly reduce the adversarial

cost for mounting the attack: entities who served as valida-
tors but who are no longer participating in the ecosystem
(have sold their tokens) will have nothing at stake, and un-
der the BAR (Byzantine, Altruistic, Rational) model [[1]
might even be willing to sell their old signing keys. The
more time has passed, the greater number of participants’
keys will be available due to exiting the ecosystem or to
key rotation.

2.2 Adversary Capabilities

For LRA posterior corruption, we assume that most cryp-
tographic keys should be considered exposed. We assume,
however, that those keys belonging to Alice, the intended
victim, and the honest subset of the current/recent valida-
tion committees are not compromised. However, recall that
she does not know the validation committee membership,
so assumptions about the current (or recent) validation
committee members’ honesty does not help her.

This is the weakest possible set of assumptions! Alice’s
key must be secure, since otherwise Cobb can arbitrarily
sign bogus transactions in her name. If a super-threshold
number of the current validation committee lost control
of their keys, then the blockchain itself can be arbitrarily
corrupted. This similarly applies to recent validation com-
mittee members, exactly how many validation committee
elections are covered by “recent” above is a security pa-
rameter. Obviously, if this number is too low and users
tolerate a level of communication delay that includes val-
idation committee changes, then an adversary who has
control over the communication network could fork the
blockchain network: they could block legitimate messages
from leaving the validation committee until enough elec-
tions occur, then use now non-recent validation committee
member keys to generate bogus (but correctly signed) mes-
sages to create the side chain.

Note that we continue to assume that the cryptographic
signature scheme to be secure, and that the cryptographic
hash function used to link blocks together remain collision
resistant. Cobb, the adversary, is allowed full access to
cryptographic keys belonging to everyone else.

2.3 Security Assumptions

As stated above, we assume that the PoS blockchain use se-
cure cryptographic schemes for signatures and for hashing.
We assume that even though Alice may have slept decades,
no critical cryptanalytic attacks have been discovered that
would non-negligibly weaken security.

We do not assume a secure source of time. While Net-
work Time Security [11]] can be used to learn about the cur-
rent time, it is not yet widely used and it can be completely

blocked by the eclipsing adversary. Worse, because of the
potential passage of time, the NTS server’s TLS private
key—corresponding to a public key in an expired server
certificate—may be compromisable in much the same way
that validator keys are compromisable.

While Alice can check signatures and authenticated data
structures, she does not know the identity of the current
validator set.

3 Short Leashes

The key idea in the short leashes approach is to re-frame
the LRA problem, so that instead of trying to detect side
chains or prevent their creation, we try to nullify the po-
tential damage that might result. At the highest level, the
adversary is attempting to defraud their potential victim(s)
by presenting lies to them (on its sidechain) and convinc-
ing them to submit transactions based on those lies. The
short leashes approach is orthogonal to side-chain detec-
tion / prevention; instead, it reduces the dynamic scope
of the user’s transactions so they are not universally ap-
plicable. Next, we’ll present the notation that we’ll use to
discuss short leashes and compare with other approaches.

3.1 Notation and Terminology

Our formalism models an Ethereum-style blockchain vir-
tual machine, but can be adjusted for other blockchains.

As before, Alice (A) is the potential victim, and Cobb
(C) is the adversary mounting the LRA to fool A into
signing an inappropriate “transaction proposal”. We distin-
guish a proposed transaction from one that is committed
to the blockchain, since users of blockchain systems often
sign a second proposal with the same nonce but with differ-
ent parameters (esp gas price) to try to “cancel” the earlier
submitted-but-not-committed transaction still pending in
the mempool.

The “database state” here refers to the persistent storage
associated with a blockchain system. More abstractly, it is
the virtual machine state that results from executing all the
finalized transactions, starting with the genesis state. The
state is implicitly determined by the logged transactions
and the virtual machine definition, so the database contents
can always be recomputed; for efficiency, it is explicitly
represented.

More concretely, DbState is a mapping
Account — AccountState, where Account is a 256-
bit value that is either a public key hash or a contract
account number, derived from the contract creator’s
account and nonce, and where AccountState is a tuple
(Nonce, Balance, ..., ContractState). Those accounts

associated with public keys are user or Externally
Owned Accounts (EOAs) that can initiate top-level
transactions; the rest are associated with code—a smart
contract—which executes invoked transactions and can in
turn make subtransaction invocations. Here Nonce and
Balance are 256-bit values, etc, and ContractState is the
Ethereum smart contract persistent store, itself a mapping
Address — Value, where Address is the set of 256-bit
integers (addresses used with the SSTORE and SLOAD
instructions), and Value is the set of 256-bit values stored
at and retrieved from those addresses!T]

Let DB, DB, € DbState denote the database states for
which root hashes are logged onto the blockchain ledger.
The abstract states are logged onto the blockchain using
a cryptographic hash summary. We take a canonical rep-
resentation of the abstract state as a Merkle-Patricia tree,
send that through a serialization—an injection function—
from the tree representation to a byte stream, and send that
output to the cryptographic hash function. Since we as-
sume that the cryptographic hash function A(-) is collision
resistant, we will abuse notation slightly and sometimes
use the hash of the serialization of the Merkle-Patricia tree
representation of DB and the state DB interchangeably.
When we need to explicitly refer to the hash value, it is
denoted h(DB).

Transactions are mappings from state to state. While
smart contract transactions take arguments, for our pur-
poses here we will model them as curried functions, so
when a user submits a transaction proposal with calldata,
we view the calldata and the contract code as together spec-
ifying an unary state-to-state function. All transactions
change state, and we denote the type Txn: DbState —
DbState. Transactions that revert will change only the
Nonce and Balance members of the sender account value
to sequence transactions and pay for gas fees incurred,
while all other DbState members—especially smart con-
tract accounts’ ContractState to which the ACID transac-
tion semantics apply—are unchanged.

A sequence of transactions T = (1,1, ..., #;) recorded
in a block moves the system from one state to the other,
viz, the transactions #; € Txn changes account balances and
smart contract persistent states, and T is the composition
of these mappings:

DB, = T(DB))
= (t1;t;...; 1)(DBy) ()
= t;(... 12(1(DBY))) 3

While all transactions are logged—via the state root
hash—into the append-only log, not all (intermediate)

ey

'We omit discussion and strict formalization of unimportant details,
e.g., EOAs do not have a State field, etc.

states are logged. A blockchain block contains various
payload data, including the list of transaction being exe-
cuted/confirmed by the block, but only the state root hash
of the state that results from the execution of all those
transactions, starting from the previous block’s state, is
included in the log entry. In other words, DB, is in the
block containing T, but there is no entry for #;(DB;) (un-
lessk=1).

Let B; denote the ;j™ block in the blockchain, and let T I
denote the sequence of transaction recorded in it. Let DBy
be the genesis block. Thus block B; takes the system from
state DB;_; to state DB;.

3.2 The Block Tree

In full generality, we think of blocks as containing point-
ers to other blocks in a content-addressable storage (CAS);
that is, a “pointer” is the cryptographic hash of the other
block’s contents. These pointers uniquely refer to contents
unless hash collisions can be obtained, and such data ob-
jects must form acyclic graphs—-cycles are impossible
unless hash preimages can be found. In the context of
blockchains, a particular block is distinguished as the gen-
esis block, which contains no hash-based pointers, and all
other blocks contain only a single hash-based parent block
back pointer. This means that in the CAS data structures
view, we have a tree of blocks where blocks have parent
pointers, and the genesis block is the root of the tree, since
it has no parent. We are not concerned with other trees with
different root blocks—they are associated with other sys-
tems, e.g., test networks, or a separate blockchain instance
created using the same software/design.

Each fork in the block tree is essentially another possi-
ble world resulting from the decision to include the block’s
transactions. The block tree is the multiverse view, and the
global consensus of a blockchain is the “legitimate” uni-
verse.

Note that in our model, two or more nodes can contain
the same sequence of transactions T, but have different re-
sultant states. While the bogus nodes can be readily identi-
fied by validating the transactions, light clients are unable
to do so since they do not maintain ContractState.

We adopt the usual tree notation: depth(n) to denote the
path length from a node to the root, dist(n;, n,) to denote
the number of edges that must be traversed to reach n,
from n;, and isAncestorOf(n;, ny) to denote the predicate
for n; being an ancestor of n,. The value of depth(n) is
just the block number for n if n is one of the consensus
blockchain blocks. All consensus blockchain blocks n will
have isAncestorOf(DBy, n) true. Light clients can easily
compute these functions.

3.2.1 Blockchains are Long Skinny Block Trees

We never talk about block trees but instead only
blockchains. Occasionally there are mentions of “uncle”
blocks in PoW chains which indicates the potential tree
structure. And occasionally sidechains that adversaries
might construct to try to fool victims.

The reason for this is due to the incentive design
in blockchain systems—both PoW and PoS designs—
motivate entities who can create new nodes to only grow
the “legitimate” chain. In PoW systems, this is the leaf
with highest depth or path length, which is again a global
property. Block rewards associated with minting a block
are part of consensus reality only when the block is in the
longest chain, so hashing to grown a shorter chain would
just be wasting resources (and an opportunity cost).

In PoS system, only the consensus committee can cre-
ate new blocks using cryptographic signatures, and bad
behaviors such as equivocation that could lead to branch
creation are (typically) punished by slashing. Stake is the
resource limit for the adversary: only entities with a signif-
icant amount of stake delegated to them can participate in
the consensus protocol.

In the context of LRAsS, C is free to add (mint) blocks ar-
bitrarily as well as hide nodes—typically entire subtrees—
in order to control what A sees and which possible world
A would believe to be the consensus reality. Of course,
C is unlikely to want or need to create a block tree with
many branches. The security assumptions regarding recent
validation committees says that C cannot mint branches
too close to the current actual consensus block, but ideally
we want to avoid making stronger assumptions if we can.
As it turns out, this is not needed.

3.2.2 Making Side Chains / Branches Infeasible

Most of the approaches to LRAs attempt to make it infea-
sible for adversaries to create side chains that would be
accepted. This means that even if the intended victim is
eclipsed and has no idea what the current blockchain state—
for PoW the identity of the longest branch, and for PoS the
current validator committee membership—the victim will
still not be fooled.

Section [4] below goes into more detail about these ap-
proaches.

3.3 Short Leash Approach

Rather than trying to make it possible to recognize that
a side chain is invalid or to somehow make it impossible
to create side chains, the short leash idea takes a different
approach. Instead, we limit the potential for damage that

could result if an eclipsed victim is fooled to act based on
side chain information. One key advantage is that some im-
plementation strategies (see Section [3.6]below) require no
changes in the cryptographic primitives used nor changes
in how the core blockchain messages formats or their in-
terpretation.

A short leash is a mechanism to tie a transaction pro-
posal to a node in the block tree. This block, which is our
anchor block, contains the state information that the user
relied upon to decide to make the transaction proposalE]
That is, the leash asserts that the transaction is null and void
unless the current block is in the causal future of the an-
chor block, and further, that anchor is not too far in the past
of the current block, as specified by the length or range of
the leash.

How would this work?

More formally, short leashes uses a higher-order func-
tion

leash € (Txn, BlockNumber, Blockhash, Z,:ss) — Txn

which returns a “range limited” version of its input trans-
action. In block tree notation,

leash(t,i,v,l) — As:if (depth(p) <i

Vv depth(p) > i+
V h(up(p, depth(p) — i) # v) {
revert(s)
} else {
t(s)
}

Here, p refers to the parent tree node of the block being
constructed, up(n, k) is a function that returns the node k
hops up the tree from node n (via parent node pointers),
and revert is a transaction that always reverts. NB: A
leash length of zero will always revert, since the system
cannot be constructing a block for which the hash value
is known/specified; arithmetic modulo Zss is assumed to
never wraparound or to abort the transaction if it occurs.

In a normal setting where Alice is not eclipsed and de-
cides to run leash(t, i, v,) based on information at block
B;, the cost is only slightly more than running ¢ by it-
self. In this case, A set i to the block number of the
current block, so when the transaction is later processed
block.number will be slightly larger than i due to delays
from her tools for examining the current state and from
transaction submission / execution delays (e.g., network
delays, time leash(z, i, v, [) spent in the mempool, etc). she
chooses [to account for what she would find an accept-
able latency. When leash(z, i, v, [) is part of a sequence of
transactions T processed against an input block DB ; where

2Short leashes are not useful if users relied on no on-chain state, since
this means that the users do intend that their transaction be applicable at
every potentially valid state.

i< j<i+l leash(t,i,v,]) =~ t. Here by “~” we mean that
the output state of the leashed transaction is the same as
the output of the unleashed transaction when restricted to
ContractState, so the (minor) differences in Balance due
to gas usage is ignored.

Let us examine what happens if, on the other hand, Alice
is eclipsed and Cobb has control of what she sees.

Suppose C has provided A with a side chain—any
nodes from the block tree not on the consensus path—
containing bogus transactions. We assume that she will
simply use the bogus “current” consensus state—a block
provided by C—and use a block explorer to examine the
state of relevant contracts in making her decision to pro-
pose a transaction. She does not have to verify the transac-
tions in that block nor that the hash pointer to the parent
node is valid. She must, however, verify the Merkle proof
for the examined contract state against the state root in the
block.

Here, A’s i and v parameters to leash will be bogus and
inconsistent with that of the real global consensus chain,
and her submission of leash(z, i, v, [) will be essentially a
no-op when processed by the real blockchain, costing her
a little gas fee for reverting but incurring no real damage.
Similarly, if C had convinced her that the current chain
state is shorter than actual so that she will make a decision
to submit 7 based on stale information, her i and / parame-
ters will prevent leash(t, i, v, [) from having any non-trivial
effect. In either of these cases, leash(z,i,v,]) ~ revert.

Note that in order for A to do the checks that we re-
quire, she needs to have access to a trusted computing
base (TCB) for the Merkle proof verification. If she uses
a block explorer under C’s control and does no verifica-
tion on her own of what the block explorer shows her, then
leashes cannot work: he can provide bogus contract state
values but a valid state root hash v from a real consensus
block—if her Merkle proof validation is skipped, she will
be fooled into issuing a leashed transaction leash(z, i, v, [)
with i, v parameters that are valid against the actual con-
sensus blockchain.

3.4 Dealing With Hard Forks

An important caveat for A’s use of short leashes is that
she will be unaware of hard forks that occurred when she
was asleep. Being eclipsed, she could easily be disallowed
from learning this.

One might imagine that C can take advantage of hard
forks that the blockchain community governance decided
on taking, by eclipsing this event from Alice. Here, he
would continue extending the old chain when everyone
else has moved on; he is able to do so because he has

the validator keys from the LRA. The converse scenario
is also potentially a problem. Here, C acquired enough
cryptographic key material to falsify governance decisions
for a bogus hard fork. He would create a bogus design /
software update to the blockchain with a back door, and
then falsify any on-chain governance logs to approve the
update. When A’s light client chain validation see the this,
she is unlikely to be able to distinguish this from a real
governance change.

Fortunately, a minor extension to leashes is feasible:
include the identity of the hard fork (version number or
name for the chain, updated genesis block information, etc)
along with the rest of the leash parameters in the signature
payload, and ensure that the extended leash parameters en-
coding scheme does not change regardless of what else
might change in hard forks. In either scenario, as long as
the fork version identity is included, any new transactions
that she signs will be inapplicable to the real blockchain.

Critically, this requires that A is able to check that
this property of the signature format is preserved. This
should be feasible by including a tool that parses the
blockchain/hard fork identity from generated signatures;
she can use the old software to validate the new. Note that
if C fools A into downloading a “new” (trojan) version of
blockchain client software to run, her TCB could become
compromised, and there are many other issues that need to
be addressed. Ideally, blockchain user client software will
run in a sandboxed environment [18 [19| |8, 21]], so that
any hard fork updated software runs in a separate sandbox
from the signing tool (which should never need to be up-
date(ﬂ), so that arbitrary oracle access to the signature key
or its exfiltration will be difficult.

3.5 Interaction with Checkpoint / Replay

Blockchain systems have bugs like any other complex soft-
ware systems. A post-deployment system management /
sustaining security engineering issue is how to handle situ-
ations where bugs have been exploited, e.g., used in a zero-
day attack. In blockchain systems, making such changes
require an upgrade / hard fork. Of course, not all hard forks
make drastic/dramatic changes to how a blockchain oper-
ates. Some may only make relatively minor changes, for
example, fixing a bug by changing how a particular virtual
machine instruction handles an edge case.

One way to undo the damage done by zero-day exploits
is to use checkpointed transactions and replay them after
the zero-day vulnerabilities have been fixed [29]. This po-
tentially interacts poorly with leashes in that the replay

3This is not entirely trivial, since we have to assume that no change
in signature algorithms will be needed and that the signature format etc
will remain unchanged.

transaction execution should yield different states—that’s
the point of fixing the bug!—and thus the state root hash
in the affected blocks in the blockchain will change, and
furthermore propagating through children blocks because
the hash-based parent pointers will also change.

From the point of view of user intentions, a leash-
protected transaction that is not part of the zero-day attack
should execute against the new bug-fixed chain state with
the same expected semantics as before. This is a policy
question: a goal of blockchain smart contracts is to have
deterministic execution from well defined semantics, and
the users who proposed transactions affected by the bug
fix probably expect that, insofar as possible, post-fork their
transactions will have the same effect on the system state
as they had before the bug fix.

This situation is no different, however, from how check-
point/replay has to deal with any smart contract code that
uses the BLOCKHASH EVM instruction and is not particular
to leashes. The hash value returned must be the same as
were returned in the earlier version of the system in order
for the smart contract transaction execution to be the same.
To provide consistent deterministic execution in the face
of bug-fixed replays from checkpoints, the cryptographic
hash function needs to be modified. Fortunately, design-
ing an alternate cryptographic hash function with the same
collision resistance properties while returning the desired
values is relatively straightforward.

Suppose a zero-day bug was found and fixed, and com-
munity governance decides that transactions in blocks B,
Jj = z should be replayed, i.e., the zero day vulnerabil-
ity was exploited by an adversary starting with transac-
tions in B,. Suppose there is a total of n blocks. Since the
blockchain virtual machine has changed, transactions in
block B, and after will be interpreted differently. The se-
mantic meaning of the contract code will be (slightly) dif-
ferent state transformations, and the result will effectively
a new/forked blockchain consisting of blocks B;. where
B;. = Bj when j < z, but B;. # Bj for z < j < n. Blocks B',
and B; differ only in the state root hash, i.e., they will be
contain the same transactions in the same order, etc. As we
will see, because of the way we define a new hash function
i for the forked chain, the hash pointer to the parent node
in the block tree will be the same value as that from using
h.

We define /’(-) for the forked blockchain using an “out-
put swizzler” function g. Let

h(Bj) ifz<j<nandx= h(B;),
h(B;.) if z< j<mand x = h(B)),
X otherwise.

glx) =

then /’(x) 2 g(h(x)). We refer to the input values for which

g(x) # x as “swizzled inputs.” Note that g is a permutation
on the space of hash output values, so it is a bijection.
NB: the values {BO, ., By, B, B£+1’ e B;l} are distinct
and all corresponding hash values are similarly distinct,
since otherwise we would already have one or more cryp-
tographic hash collisions, violating our assumption that &

is collision resistant.

Theorem 1. 1’ is collision resistant iff h is collision resis-
tant.

Proof. (Sketch.) If we had an effective means to find dis-
tinct x and y such that h(x) = h(y), then g(h(x)) and g(h(y))
are obviously the same value. Conversely, suppose we
had an effective means to find distinct x and y such that
K (x) = K (y). This means g(h(x)) = g(h(y)). But since g is
a bijection, h(x) = h(y) must hold.

The resources needed to implement an algorithm for g is
quite modest, since the number of swizzled inputs is linear
on the number of affected blocks (n — z).]

Should there be another zero-day bug fix and a new fork
created, the definition for that replacement hash function
h” is straightforward and natural. The composition of two
permutations is itself a permutation, so the proof extends
naturally.

3.6 Implementation Approaches

There are many ways to implement leashes. While
leashes are straightforward in theory, from an engineer-
ing perspective—especially when retrofitting security
mechanisms—exactly how they are implemented affects
usability and can be critically important. Obviously, one
could just require all top-level transaction entry points in
all contracts to add the extra restriction parameters, but
that would be hugely disruptive. Similarly, requiring users
to create new, “throwaway” contracts with fixed leash pa-
rameters and then calling them would work, but would
needlessly pollute the blockchain state with throwaway
contracts that will never be used again.

Below, we examine a few ways that leashes could be
realized in a less disruptive way and discuss the trade-offs.
In all cases, some degree of tooling support is likely re-
quired. In order for users to use leashes, they have to spec-
ify the i, v, and [parameters for the top-level transaction,
and this means that the top-level invocation will be differ-
ent. Using leashes properly is impossible without either
user-visible changes (new interfaces that require users to
supply additional parameters) or tooling changes (tools to
automatically figure out the appropriate values of i, v, and

D).

For brevity that we omit the check for hard fork identi-
ties discussed in Section [3.4} the changes needed for fork-
resilient leashes are straightforward. Making a blockchain
fork identity available for verification can be implemented
in a variety of ways. The simplest is to encode the fork
identity in the result returned by the CHAINID EVM in-
struction [22]], though if there are backward compatibility
issues with existing contract usage a special smart contract
that returns the appropriate constant—which is updated on
hard forks—could be used instead.

3.6.1 VM Changes

The EVM BLOCKHASH opcode allows access to the most
recent 256 blocks which may not be enough. In order to al-
low larger values of /, the leash length to the anchor block,
we could (1) simply modify BLOCKHASH to work even with
block numbers more than 256 from the current one, or (2)
introduce a new instruction, say, BLOCKHASH_FD, which
has the extended, “full-domain” semantics.

The former choice can break existing code that rely on
the BLOCKHASH op code returning zero for a block that
is committed more than 256 blocks ago, and without a
thorough checking of all contracts it is difficult to know
whether this is safe. The latter choice is safe, but uses a
new opcode when one might not be actually needed.

Exactly how many blocks from the current blocknumber
should BLOCKHASH_FD work is another important design
parameter. If it is too small, then some users may find
using leashes difficult. More importantly, a sudden influx
of transactions can push transactions into later blocks, so
a DOS attack could nullify leashed transactions.

3.6.2 Wrapper Contracts

Rather than changing tooling or the underlying EVM se-
mantics, for many contracts it would be reasonable to wrap
the user-invoked entry points with a leashed interface. Con-
tract entry points that are intended to be called by other
contracts as subtransactions would not need this treatment,
since the leashing is only needed for the top-level transac-
tion.

Figure [I] shows a leash implementation via a modifier,
and Figure [2] shows the leashed interface for an ERC20
contract. Note that the LeashedErc20 contract is not
ERC20 compatible.

Note that this approach is ineffective beyond the
BLOCKHASH instruction’s 256 block limit. For longer leash
lengths, some other change to allow more than an hour of
submission delay may still be needed, since Ethereum has
a block interval of approximately 14 seconds.

// SPDX-License-Identifier: OBSD
pragma solidity 40.8.11;

contract Leashed {
modifier Leash(uint256 bn,
uint256 hash_val,
uint256 leash_len) {
require(bn < uint256(block.number),
"used bogus future state!?!");
require(uint256(block.number)
< bn + leash_len + 1,
"used stale old state!");
require(uint256(blockhash(bn))
== hash_val,
"on side chain!");

Figure 1: Leashing via a Solidity modifier

3.6.3 A Contract For An Extended BLOCKHASH

A non-VM change is to install a BLOCKHASH caching con-
tract that can provide the blockhashes for all block num-
bers. While an VM change to install this as a precompiled
contract (akin to other precompiled contracts like crypto
support [17, 24} [7]], etc) to ensure that all blockhashes are
available would be most robust, it is not necessary since
this contract would not need access to anything other than
ordinary EVM opcodes in its implementation. An exter-
nal “driver” to call this contract to lookup and cache any
missing blockhashes, at least once every 256 blocks, suf-
fices, though this dependency could, in principle, turn into
a denial-of-service opportunity for an adversary. However,
if many users use this for LRA prevention (and pay for it
storing hash values), an external driver might be superflu-
ous.

Note that it is easy for an adversary with a super-
threshold of validator keys to falsify blockhash informa-
tion in the caching contract in their side chain. This is not
a problem, however, since Alice doesn’t care if her trans-
action proposal could be made to have an effect on a side
chain: it is only the nullification at the consensus path that
matters, and as noted above, as long as the Merkle proof
validation for on-chain data that contributed to the decision
to sign the contract proposal is done, she is fine.

3.6.4 A General Leash Gateway Contract

The approach of using the Leash Solidity modifier to
make leashed versions of contract interfaces on a per-
contract basis does not scale well. Instead, a better ap-

// SPDX-License-Identifier: OBSD
pragma solidity 40.8.11;

import "@openzeppelin/IERC20.sol";
import "./leashed.sol";

contract LeashedERC20 is Leashed {
TIERC20 public erc_20_contract;

constructor (address _erc20) {
erc_20_contract = IERC20(_erc20);
}

function lsh_transfer(uint256 bn,
uint256 hash_val,
uint256 leash_len,
address to,
uint256 amount)
public Leash(bn,
hash_val,
leash_len) returns(bool) {
return erc_20_contract.transfer(to, amount);
}
// ...

etc

}

Figure 2: Leashed Version of an ERC20 Contract

proach would be a contract that could work with any exist-
ing smart contract interfaces.

This is possible using lower-level EVM instructions.
Here the calldata would contain a prefix consisting of the
leash parameters and the leash target contract address, fol-
lowed by the normal calldata for the target contract call.
The generic leash contract will verify the leash parameters,
and if things are correct, extract the target contract address
into an address variable _addr, and use _addr.call to
pass the real calldata through. Appendix [B]shows one im-
plementation.

There are some drawbacks to this approach. This could
have problems with target contracts that need to use the
maximum calldata length as determined by the per block
gas limit.

More practically, standard wallets and tools can be
changed to automatically add the leash prefixes and in-
direct through the generic leash gateway. This would es-
sentially leave the user experience unchanged.

3.6.5 Transaction Proposal Metadata

Instead of making all contracts include leash parameters as
call arguments and implementing checks as explicit code
or indirecting through a gateway contract, the leash param-
eters could be included as part of the transaction proposal

metadata. In this design variation, the leash parameters

is included in the signature, like gas fees or gas limits,
but not sent into any contracts. Instead, before the smart

contract execution the leash parameters are validated first,
and the call automatically reverted if the check fails. Be-
cause leashing is only needed for the top-level transaction,
no change to call, callcode, or delegatecall to in-
clude the leash parameters is needed. Because this is a

declarative style design, the transaction can be sequenced—
that is needed to increment the EOA nonce and to charge

some minimal gas fee—but no smart contract code needs

to be loaded for its execution if/when the leash parameters

would have caused a revert.

Since such an implementation affects the transaction sig-
nature format, how validators / compute nodes process the
proposed transaction, etc, this is not a simple change for
existing smart contract blockchain networks, even though
leash parameters can be (initially) optional and phased in.
Taking this approach would require a network upgrade that
introduces new functionality.

On the other hand, this approach allows existing con-
tracts to work with short leashes, with no changes needed
those contracts.

3.6.6 Non-Ethereum Compatible Blockchains

Leashes can be implemented natively in blockchain sys-
tems that do not attempt to maintain (some level of)
Ethereum compatibility or even use a completely differ-
ent virtual machine than the EVM.

In particular, tools to invoke transactions can provide
UI to specify the leash restriction parameters, the transac-
tion signature scheme can include these parameters as non-
call parameter metadata, etc. If adding leashes to the non-
Ethereum blockchain is a retrofit, the same approach as
with transaction proposal metadata above is still feasible:
it could be done in an incremental fashion in a sequence
of network updates, with a new transaction proposal for-
mat and submission endpoints etc coexisting with the old
format while tooling catches up. Removing compatibility
with existing Ethereum tools as a design goal makes leash
implementation much easier, at the engineering cost trade-
off of needing more custom tooling work.

3.7 Extensions and Generalizations

In one sense, leashes are nothing more than ensuring that a
cryptographically signed messages include the right secu-
rity context information. Ensuring signature schemes are
securely used, beyond that of the security of the primitive
itself, is old and includes signature padding [9], ensuring
message serialization is an injection, etc. What is perhaps

more important here is deciding what security context in-
formation is important, ignoring what is irrelevant, and
coming up with a simple, understandable design that is
easy to explain to end users.

In another sense, leashes are nothing more than a ver-
sion of correctness preconditions from Hoare logic or
precondition checks commonly recommended for writing
defense-in-depth code—extended to a “desirability” predi-
cate or determining a P in the Hoare triple {P} C {Q} where
C is our transaction ¢ and Q = "profit”, and the including
a check for P. Here, Alice, the prototypical victim, has an
off-line, private decision procedure for when she wants to
submit a transaction proposal, based on the current consen-
sus state. Cobb does not know this predicate exactly, but
has an approximation for it that allows him to construct an
attractive side-chain universe that will cause her to propose
a transaction. In this view, the post-condition achieved by
the transaction, when applied to the actual consensus state,
is undesirable to Alice, but desirable by Cobb. Obviously,
Alice’s predicate has off-chain inputs that Cobb cannot
influence, e.g., her cash reserves.

If we understood how on-chain inputs to the off-line,
private desirability predicate for executing transactions be-
have, a weakest precondition checking version of leashes
could be devised, where the on-chain inputs are checked
before allowing the main body of the transaction to be ex-
ecuted. Such a weakest precondition leash would be less
general, highly customized for users, and much harder to
implement. Additionally, such a leash would obviously re-
veal information about the decision making process and
may sometimes be undesirable even though such disclo-
sures can lead to greater economic efficiencies. In contrast,
the block/hash/length constrained leash is much easier to
understand and does not require public accessors for other
contracts’ state, however, and the simplicity of the correct-
ness argument makes it easy to (manually) apply univer-
sally. An area to explore is whether automated tools for
extracting precondition checks as users decide on their
transactions (e.g., part of block explorer) and providing
smart contract tools/libraries to allow highly flexible pre-
condition verification could be feasible and usable.

4 Related Work

Other approaches to defending against LRAs [6, 13}, [10]
include securing the key material via forward secure sig-
natures [20]], additional consensus-like on-chain voting on
checkpoints coupled with limits on token transfers [2]], or
using another “helper”” blockchain to supplement/enhance
the security of a PoS blockchain [28,27]. We discuss these
approaches below.

4.1 Forward Secure Signatures

Forward secure cryptography schemes [3} 5] are effec-
tive in theory, but can be difficult to realize in practice:
copies of a running process’s memory are made during
virtual machine migration as well as during normal pag-
ing activityﬂ filesystem data are copied as part of normal
system backups; and even erasing or overwriting data is
problematic due to magnetic disk head alignment [[14] or
semiconductor data remanence and FLASH wear level-
ing [15} 26, 4] [12]. System level data leakages, like CPU
side channels, are difficult to eradicate.

Of course, the signing functionality does not have to
be realized on common or standard system configurations.
We could build a fault-tolerant service from a set of TEEs
from distinct fault domains to ensure no hard-to-erase
copies are made. However, using such custom solutions
would incur significant operational costsE]

More importantly, while altruistic validators might be
willing to build and use an expensive configuration such as
an network of TEEs, in the BAR model the profit maximiz-
ing strategy for a rational actor is to save copies of the key
material to sell in an auction after they exit the ecosystem!
The security assumption needed for the forward secure
approach to succeed will require that the number of non-
altruistic validators in every validation committee to be
sub-threshold.

4.2 Winkle: Voting on Checkpoints and To-
ken Transfer Limits

The focus of Winkle is on the security of Validator Based
Consensus with Reconfiguration (VBCR) systems. The
focus is on protecting the changes in the validator set as
the VBCR evolves, though the approach also apply to the
transactions being sequenced by the validators.

Winkle protects PoS blockchains against LRAs using
two main mechanisms: on-chain checkpoint voting, and a
token transfer limit to prevent an adversary from acquiring
a super-threshold number of tokens in a fork. The key idea
is that a new block validates the previous block, not only
because the validators do so, but because the users who
propose new transactions do it as well—via the check-
point votes. A threshold number of checkpoint votes is
needed for it to succeed. Winkle specifies g as the thresh-
old needed as a fraction of all native tokens. This latter

4Locking pages via mlock(2) prevents paging, but not VM migra-
tion/failover.

3Both Intel SGX and AMD SEV-SNP realizations of the TEE abstrac-
tion allow paging of TEE memory, but the content is encrypted and thus
should not leak information.

10

form of validation makes the block a “confirmed check-
point.”

The first mechanism, on-chain voting, works roughly
as follows. Transactions get an extra field, used to hold
a checkpoint block hash value, which is the vote being
cast by the transaction proposer. In addition to the valida-
tors reaching consensus via stake-weighted voting on new
blocks containing transactions, every transaction within
the block would include a vote on a previous checkpoint
state. A vote on a checkpoint also implicitly votes for all
previous checkpoints in its timeline (blocks on the path to
the root of the block tree). Since users may not be active,
they can also delegate their checkpoint votes to “pools” in
roughly the same way that users can delegate their tokens
to validators for staking and earn rewards.

The second mechanism, token transfer limitations, is in-
tended to support the first mechanism. By limiting the total
amount of token transfers, Winkle ensures that an adver-
sary attempting to create a side chain fork cannot accumu-
late too many tokens and thus acquire a super-threshold
amount of checkpoint voting power. The concern is that
without this, the adversary can pack token transferring
transactions into the first block of the side chain so that
on subsequent block(s) they will have enough checkpoint
voting power to confirm it.

Winkle is unclear on what should occur if the majority
of the votes somehow disagreed with the blocks that the
validators signed. Winkle’s formalism does not include
state roots in the blocks, so in their model validators only
provide transaction order finality and not state value final-
ity [29], so any disagreement would presumably be due to
scheduling / front-running issues. Without a design speci-
fication for how disagreements should be handled, perhaps
“witnessing” better describes the role of checkpoint hashes
in transactions.

4.2.1 Long Range Assumptions

A key difference between the threat model used in Winkle
and that used in this paper is that Winkle must assume that
the majority of users will keep their signature keys secure
even in the long run. This is a much stronger assumption
that used above; in contrast, we assume the worst case: all
keys except those belonging to the potential victim and to
recent validation committee members are assumed to be
compromised.

Clearly, if the users/pools have a high turnover rate or
they practiced hygienic key rotation and transferred their
tokens to a new accounts/signature keys periodically, then
it is quite plausible that older keys will not be perpetually
kept secure and can be acquired in an LRA. While it is
difficult to know whether, many years from now, what per-

11

centage of transaction signing keys will be compromisable,
this potentially invalidates the assumption that checkpoint
votes cannot be falsified.

In order to fully understand the security of checkpoint
confirmation style designs for LRAs, there needs to be a
way to relate the adversarial cost to the number of validator
or user/pool keys that might be exposed. Winkle appears
to allow all validator keys to be exposed, but all or the
majority of voter/pool keys may have to remain secure for
all time.

4.2.2 Incentive Compatibility

Winkle provides incentives for honest behavior and tries to
prevent concentrations of power or centralization at large
pools.

The network rewards those whose vote contributed
to a checkpoint being confirmed. The reward amount is
weighted and capped, so that pools are unlikely to grow
too large: after a pool has reached a threshold size, dele-
gating more votes to the pool will no longer increase the
reward that it receives. Less active users rationally seeking
to maximize rewards will tend to migrate from a super-
threshold pool to sub-threshold pools.

Sybil Pools The goal of discouraging the formation of
large pools is to ensure there are enough independent pools
for decentralization. Unfortunately, in the BAR model, ra-
tional pools can mount Sybil attacks.

Winkle models the operational cost to pool operator i as
E; but does not specify how E; and E; might relate for op-
erators i and j. If pools were independent, then one might
imagine that E; and E; are approximately the same: they
have to run validators / full clients, pay for networking,
monitoring, etc. When pools Sybil, a single real pool oper-
ator incurs the non-recurring cost to set up a full client, etc,
but every subsequent Sybil pool operator can piggy back
on the results, yielding a low recurring cost for setting up
each additional Sybil pool operator identity.

Lazy Lemmings Even if pool operators do not mount
Sybil attacks to earn rewards linear on the amount del-
egated, a purely rational actor (in the BAR model) may
conclude that, since votes are public, rather than actually
operating a validating full client and incur the cost of repli-
cated contract execution, it will be more profitable to sim-
ply vote the way that the others are voting. Since there is
no penalty for voting incorrectly, this can be a profit max-
imizing strategy—and even possibly safe for the network
when there are plenty of altruistic participants for “lazy
lemming” voters to follow. However, if a sub-threshold

number of Byzantine participants were to cast their votes
quickly and the altruistic participants votes/transactions
are delayed or lost, the (short-term rational) lemming voter
could be mislead about the wisdom of the crowd and help
push the vote count over the threshold/cliff.

What this means is that the security assumption required
for checkpoint voting to work is standard Byzantine Fault
Tolerance, with ¢ fraction of votes delegated to altruistic
(and not just rational) players.

While the lazy lemmings strategy is potentially a prob-
lem with all delegated PoS systems, slashing for incor-
rect votes can serve as a disincentive for using the follow-
the-crowd strategy when only a few votes have been cast.
Other common techniques for preventing lazy lemmings
include commit-and-reveal, though that would not be prac-
tical here.

Token Transfer Restrictions Winkle imposes a token
transfer limit for each block (Lemma 5.3). The purpose of
this limit is to ensure that an adversary with control of two
past validator set (due to LRA) cannot manipulate transac-
tions between two valid database states so that the adver-
sary will gain more than the maximum threshold amount
of stake (by processing in-transfers but not out-transfers).
Being able to create a fork where the adversary has greater
than maximum threshold means that the adversary can fal-
sify state so that all future validator set membership will
be under their control.

It is unclear how this limit is proposed to be enforced
and how enforcement is to be incentivized: the obvious
choices are (1) transactions that would push the per-block
token transfer over the limit could be deferred until the
next block(s) or (1) the transactions could be aborted.
Since the amount of transfer is not knowable, in general,
until the transacton executes, it would be unfair to valida-
tors to execute a transaction (in part) until the transaction
amount is known to defer it, since the gas fees will not
be paid; similarly, it would be unfair to transaction pro-
posers if their transactions were aborted—with gas fee
paid—through no fault of theirs, due to global conditions
that are hard to predict.

This requirement is also a global property, which makes
“trustless finality” style estimates difficult since transfers
could be either deferred or aborted for non-local reasons,
and knowing whether (or when) one’s transaction will ac-
tually be committed is difficult, making the use of transfers
as payments problematic.

Decentralized Finance and Locked Tokens The Win-
kle design does not allow tokens under the control of smart
contracts to participate in checkpoint voting. This means

that tokens locked up in smart contracts such as bridges,
liquidity pools, etc. Tokens can also be locked up—but
nonetheless remain in effect liquid—via schemes such as
liquid staking where a service stakes depositors’ tokens to
earn rewards while issuing proxy tokens representing the
deposit amount which can be traded, while maintaining a
liquidity pool to ensure redemption of the proxy token for
the native token is feasible. The amount of locked tokens
could be a significant fraction of the total token supply
and could cause problems with the liveness of checkpoint
voting.

Winkle Threat Model An important point is that Win-
kle uses a different threat model than that used in this pa-
per. Winkle classifies accounts as active/honest, byzantine,
eclipsed, and dead. Despite reward payments for voting
for checkpoints, the scheme is not incentive compatible.
There are no (hyper-)rational actors who might sell their
tokens and auction off their signature keys. Obviously, it
is not only the validators who might rationally decide to
sell their keys—which were used in the BFT protocol to
sign blocks—but ordinary users can also behave rationally:
after selling their tokens or transferring to a new account,
they can sell their old account’s signature keys. This would
render the on-chain votes suspect, since the blocks on a
forked side chain would contain bogus transactions that
vote for bad checkpoints.

4.3 Using Another Blockchain

In contrast to Winkle which tries to enhance a blockchain
to secure itself, the approach take by Babylon [28] and
BMS [27] is to essentially secure a first blockchain
with a second, more stable, and hopefully more secure
blockchain. While this seems reasonable, there is the obvi-
ous question of potential infinite regress: what makes the
second blockchain actually more secure? Does it in turn
have to be secured by yet another blockchain?

As noted in Section 2} PoW blockchains are subject to
LRAs as well if the eclipsed victim can be confused about
the passage of time. A plausible side chain—using less
than 51% hashing power—can be constructed if the vic-
tim is prevented from seeing the actual longer consensus
chain. If the victim can be eclipsed for the PoS blockchain,
there is no reason why they cannot also be eclipsed with
respect to the PoW blockchain that is being used to secure
it. The additional adversarial work needed to block com-
munications to the PoW chain as well as the PoS chain
would seem to be virtually nil.

BMS examines the case of a PoS blockchain being made
more secured using a PoW blockchain such as Ethereum

12

to log the configuration changes, i.e., the validation com-
mittee elections. Babylon enhances the security of a PoS
blockchain by logging configuration changes to a well-
known PoW blockchain, Bitcoin. Like most blockchain
designs, the security of a PoW chain depends on it being
popular and actively mined, because the adversarial cost
to take over a PoW blockchain is the “51% attack”, where
the adversary needs 50%+e of the total mining power. If
the total number of (non-Byzantine) miners drops, the cost
to accrue 50%+e€ becomes smaller, and the PoW chain’s
security suffers.

However, an important rationale, if not the raison d’etre,
for the PoS blockchain design approach is to provide a
better environment than PoW style designs: faster smart
contract execution, lower latency, less wasteful energy us-
age, etc. If the PoS blockchain really is wildly successful,
then one would imagine that loads would migrate from the
PoW blockchain to the PoS system. This renders a security
design that tries to inherit security from the PoS system
suspect, since the success of the PoS system becomes self-
defeating!

One reasonable view, of course, is that the PoS system
requires more “security support” while it is still small,
so a design like these makes sense until the PoS system
becomes more mature. However, this still leaves us in a
(small) quandry: a mature PoS system still need LRA pro-
tection, and it should not try to derive support from a PoW
system in its decline.

5 Conclusion

We have described the novel, yet simple technique of us-
ing short leashes approach to prevent powerful adversaries
from benefiting from long-range attacks on blockchain sys-
tems. Abandoning the attempt to distinguish one branch
of the block tree from another, we instead require users to
explicitly restrict the application scope of transactions they
sign; this requires solving a much simpler subproblem, re-
sulting in a solution to the LRA problem that works well
in the BAR model and is relatively easy to implement. No
new cryptographic tools are needed; the standard notion
of cryptographic context suffices.

The leashes technique is orthogonal to other approaches
such as trying to recognize side chains or preventing acci-
dental private key disclosures via forward-secure signature
schemes. Multiple techniques can be applied for additional
defense-in-depth: leashes will not help users who are care-
less in their use, e.g., specify the block number i to be
close to the root rather than the leaf node in the block
tree and with an excessively large length limit /, whereas
techniques that do not require correct user behavior would

13

work regardless.

References

[1] A1ver, A. S., Arvist, L., CLEMENT, A., DAHLIN, M., MAR-
TIN, J.-P., AND PorTH, C. BAR fault tolerance for cooperative
services. In ACM SIGOPS operating systems review (2005), vol. 39,
ACM, pp. 45-58.

2

[

Azouvi, S., DaNEzis, G., AND NIKOLAENKO, V. Winkle: Foil-
ing long-range attacks in proof-of-stake systems. In Proceedings of
the 2nd ACM Conference on Advances in Financial Technologies
(2020), pp. 189-201.

[3] BELLARE, M., aAND MINER, S. K. A forward-secure digital
signature scheme. In Annual international cryptology conference

(1999), Springer, pp. 431-448.
[4]

BrEeuwsma, M., JongH, M. D., Kraver, C., Knusrr, R.
V. D., anp RoeLofrrs, M. Forensic data recovery from flash

memory, 2007.
[5]

BucumaNnN, J., DauMEN, E., AND HULsING, A. XMSS-a prac-
tical forward secure signature scheme based on minimal security
assumptions. In International Workshop on Post-Quantum Cryp-

tography (2011), Springer, pp. 117-129.
[6

=

BuTteriN, V. Long-range attacks: The serious problem with
adaptive proof of work. Ethereum Foundataion Blog, 5 2014.
https://blog.ethereum.org/2014/05/15/long-range-
attacks-the-serious-problem-with-adaptive-proof-
of-work/.

[7

—

BuTerIN, V., AND REITWIESSNER, C. EIP-197: Precompiled
contracts for optimal Ate pairing check on elliptic curve alt_bn128.
https://eips.ethereum.org/EIPS/eip-197, 2017.

[8] CanEeLLA, C., WERNER, M., Gruss, D., AND ScHwARZ, M.
Automating seccomp filter generation for linux applications. In
Proceedings of the 2021 on Cloud Computing Security Workshop
(New York, NY, USA, 2021), CCSW ’21, Association for Comput-

ing Machinery, p. 139-151.
[9]

Coron, J.-S. Optimal security proofs for PSS and other signature
schemes. In EUROCRYPT 2002, Citeseer, p. 272.

[10] DeirRMENTZOGLOU, E., PAPAKYRIAKOPOULOS, G., AND PAT-
saki1s, C. A survey on long-range attacks for proof of stake proto-

cols. IEEE Access 7 (2019), 28712-28725.

[11] Franke, D., SiBorLp, D., TEicHEL, K., DANSARIE, M., AND
SunpBLAD, R. RFC 8915 network time security for the network
time protocol. https://datatracker.ietf.org/doc/html/

rfc8915.

[12] Fukawmi, A., GHosE, S., Luo, Y., Ca1, Y., aND MurtLU, O.
Improving the reliability of chip-off forensic analysis of NAND
flash memory devices. Digital Investigation 20 (2017), S1-S11.

DFRWS 2017 Europe.

[13] GaZi, P., Kiavias, A., anp RusseLL, A. Stake-bleeding at-
tacks on proof-of-stake blockchains. In 2018 Crypto Valley Confer-

ence on Blockchain Technology (CVCBT) (2018), pp. 85-92.

[14] Gutmann, P. Secure deletion of data from magnetic and solid-
state memory. In 6th USENIX Security Symposium (USENIX Secu-

rity 96) (San Jose, CA, July 1996), USENIX Association.
[15]

GuTtMmANN, P. Data remanence in semiconductor devices. In 10th
USENIX Security Symposium (USENIX Security 01) (2001).

https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/
https://eips.ethereum.org/EIPS/eip-197
https://datatracker.ietf.org/doc/html/rfc8915
https://datatracker.ietf.org/doc/html/rfc8915

[16] HeiLmaN, E., KENDLER, A., ZOHAR, A., AND GOLDBERG, S.
Eclipse attacks on bitcoin’s peer-to-peer network. Cryptology
ePrint Archive, Report 2015/263, 2015. https://ia.cr/2015/

263.

[17] Hess, T., LuonGo, M., DyraGA, P., aAND Hancock, J. EIP-
152: Add BLAKE2 compression function F precompile. https!

//eips.ethereum.org/EIPS/eip-152, 2016.

[18] JanGpa, A., PowEeRrs, B., BERGER, E. D., AND GuHA, A. Not
so fast: Analyzing the performance of WebAssembly vs. native
code. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19) (2019), pp. 107-120.
[19]

Korosick, M., Naravan, S., JounsonN, E., Warrt, C.,
LeEMay, M., Gara, D., JHAaLA, R., AND STEFAN, D. Isola-
tion without taxation: Near-zero-cost transitions for WebAssembly

and SFIL. Proc. ACM Program. Lang. 6, POPL (jan 2022).

[20] KuzNETsov, P., AND ToNkKIKH, A. Asynchronous reconfigura-

tion with Byzantine failures, 2021.

[21] Lores, N., MarrTINs, R., CorrEIA, M. E., SERRANO, S.,
AND NuNEs, F. Container hardening through automated seccomp
profiling. In Proceedings of the 2020 6th International Work-
shop on Container Technologies and Container Clouds (New York,
NY, USA, 2020), WOC’20, Association for Computing Machinery,

p. 31-36.

MEIsSNER, R., AND EisenBacH, B. EIP-1344: ChainID opcode.
https://eips.ethereum.org/EIPS/eip-1344, 2018.

https://

[22]

[23] Oasis Team. The Oasis blockchain platform.

oasisprotocol.org/researchpapers, 2020.

[24] RertwiessNERr, C. EIP-196: Precompiled contracts for addition
and scalar multiplication on the eliptic curve alt_bn128. https:

//eips.ethereum.org/EIPS/eip-196, 2017.

[25] RocGaway, P. Formalizing human ignorance: Collision-resistant
hashing without the keys. Cryptology ePrint Archive, Report

2006/281, 2006. https://ia.cr/2006/281.

[26] SkoroBOGATOV, S. Data remanence in flash memory devices.
In Cryptographic Hardware and Embedded Systems — CHES 2005
(Berlin, Heidelberg, 2005), J. R. Rao and B. Sunar, Eds., Springer

Berlin Heidelberg, pp. 339-353.

[27] STteEINHOFF, S., STATHAKOPOULOU, C., PAVvLOVIC, M., AND
Vukori¢, M. BMS: Secure decentralized reconfiguration for

blockchain and BFT systems, 2021.

Tas, E. N., Tsg, D., Yu, F., anp KaNNAN, S. Babylon:
Reusing bitcoin mining to enhance proof-of-stake security, 2022.

(28]

[29] YEE, B., Song, D., McCorry, P., aANnD Buckranp, C.

Shades of finality and layer 2 scaling. CoRR abs/2201.07920
(2022).

Appendices

A Winkle Security Proof Issues

Winkle’s security proof for Lemma 5.3 has at least two
errors. Firstly, the restriction that an adversary who ac-
quires old validator private keys can only construct bogus
transaction as subsequences is wrong. Secondly, that the
amount of tokens sent or received due to the execution of

a sub-sequence of the original transactions between two
states has anything to do with the amount of tokens sent
or received due to the original sequence is wrong.

A.1 Notation

First, we revisit the notation used in Winkle and extend it
slightly.

Let DB, and DB, denote database states. A sequence of
transactions T = (71, ,, ..., f;) from the legitimate execu-
tion history moves the system from one state to the other,
viz,

DB, = T(DB,) 4)
= (t1;; ..., 1) (DBy) ©)
= t(... (11 (DB}))) (6)

Let A(T) denote the set of all transaction sequences con-
structed from transactions in T that would be acceptable,
i.e., transactions from any EOA are in the order determined
by the nonce value used in the signature.

Let S(T,DB) and R(T,DB) denote the amount that
adversary-controlled addresses sent and received, respec-
tively, in the the transaction sequence T when executed
against state DB.

A.2 Sub-sequences

While transactions signed by any single Externally Owned
Account (EOA) must be processed in order, there are no
restrictions on the relative order of transactions from inde-
pendent accounts.

If T consists of k transactions from a single account,
then

A(T) = {()7 (tl)’ (tl’ t2)9 cees (tl, b, -~-tk71)3 T}

since that account’s nonce determines transaction ordering.
Clearly, |A(T)| = k + 1. (Of course, this assumes that the
empty block is considered valid; many systems have addi-
tional limitations and miners/schedulers may not be able
to create blocks with a small number of transactions.)

If, on the other hand, T consists of transactions from k
independent EOAs, then there are many different transac-
tion schedules that could be constructed from T, of varying
lengths. Let A;(T) denote the subset of acceptable transac-

14

https://ia.cr/2015/263
https://ia.cr/2015/263
https://eips.ethereum.org/EIPS/eip-152
https://eips.ethereum.org/EIPS/eip-152
https://eips.ethereum.org/EIPS/eip-1344
https://oasisprotocol.org/researchpapers
https://oasisprotocol.org/researchpapers
https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196
https://ia.cr/2006/281

tion sequences from A(T) of length j. Then
IA(D)| = [Ag(D) + ... + A1 (T)] + [A(T)|

k!
:1+k+...+5+k!+k!

Transaction ordering is only required when transactions
originate from the same EOA, there are many ways for
an adversary to construct acceptable fake block(s) from
transaction proposals from real block(s). The adversary is
not restricted to subsequences of the original order.

A.3 Transfer Limits

Most PoS blockchains currently operational or being de-
signed provide the ability to run smart contracts, Turing
compute programs (modulo gas limits) that can do much
more than transferring tokens. In particular, a smart con-
tract can programmatically control the amount being trans-
ferred. Figure [3]is one such smart contract.

In this contract, the amount of tokens under the control
of the contract influences the number of tokens transferred.
Suppose this contract was instantiated by Alice, so she is
the owner. Imagine that T = (#;, %), where #; is a trans-
action by Bob to transfer an odd number of token base
units to the contract, and #, is a transaction by Alice to
transfer 1,000,000 Eth to an address under the control of
the LRA adversary (e.g., Alice is in cahoots with the LRA
adversary).

Suppose in DB, the contract’s balance is even and
greater than 1,000,000 Eth. This means that in #;(DB,), the
contract’s balance is odd, and thus the amount transferred
by 1, is just one base unit. This means that R(T,DB,) =
1 Eth.

Now, since Alice and Bob have independent EOAs,
T* = () € A(T) since her transaction can go through
without his being executed first. Executing T* to get
DB’ = T*(DB,), we see that R(T*, DB;) = 1,000,000 Eth,
so R(T,DB,) # R(T*,DB)).

The issue is that the behavior of transactions on a smart-
contract blockchain system can be highly state dependent,
so computing estimated bounds on S or R over all pos-
sible transaction sequences A(T) will require essentially
executing each of those sequences against the input state.
Except for design choices such as requiring the transaction

15

// SPDX-License-Identifier: OBSD

//

// Counterexample to Lemma 5.3 of _Winkle:
// Foiling Long-Range Attacks in Proof-of-
// Stake Systems_

// https://eprint.iacr.org/2019/1440.pdf
//

// Key properties: Owner can initiate

// transfer to a recipient (e.g., a

// validator); actual amount transferred
// depends on contract state (contract

// balance). Anyone can affect contract
// state (by sending tokens to this

// contract via the default function).

pragma solidity 40.8.11;

contract Lemma5_3 {
address public owner;

constructor () {
owner = msg.sender;

}

function send(address payable to,
uint amount) public {
require(msg.sender == owner);
if ((address(this).balance % 2) == 1) {
to.transfer(l);
} else {
to.transfer (amount) ;
}
}

receive () external payable {}

Figure 3: Example contract: Adversary Receive Amounts Are
State Dependent

proposers to pre-declare the maximum amount transferred
(and to which accounts), it is unlikely that shortcuts exists
for Turing complete smart contract VMs. We know from
above that k < |A(T)| < kle, and it seems reasonable that
in practice the size will likely be on the higher end of the
range rather than the lower end. This implies that comput-
ing S or R will be, in general, prohibitively expensive.

While normal legitimate token transfers are unlikely to
be constructed to make it difficult to bound R(-) over A(T),
the existence of contracts that makes such bounds difficult
to compute—even in the absence of users/pool keys being
compromised—poses a problem for the practicality of the
Winkle design.

B Generic EVM Short Leash Gate-
way

Figure[]is a potential implementation of a generic gateway
contract for checking leashes. The assumption here is that
the tooling for end users will be modified so that when the
EOA account that they control initiates a top-level trans-
action, the transaction indirects through this gateway con-
tract.

// SPDX-License-Identifier: OBSD
// Generic leash checker gateway
pragma solidity *0.8.0;

contract LeashGateway {
function 1sh_check_abi(uint256 fork_id,
uint256 bn,
bytes32 hash_val,
uint256 leash_len,
address target,
bytes calldata rest)
public payable
returns (bytes memory) {
require(fork_id == 0xdeadbeef,
"wrong fork");
require(bn < uint256(block.number),
"used bogus future state!?!");
require(uint256(block.number)
< bn + leash_len + 1,
"used stale old state!");
// modify to use internal caching fn
require(blockhash(bn) == hash_val,
"on side chain!");
// gas overhead
uint256 pass_gas = gasleft() - 0x800;
bool success;
bytes memory reply;

(success, reply) = target.call{
value: msg.value, gas: pass_gas }(rest);

require(success, "transaction reverted");
return reply;

Figure 4: Generic EVM Short Leash Gateway

Note that there is a 224 byte overhead for the leash
parameters on the input call data, and the success/failure
code prefix for the return data incurs a 96 byte overhead.
The additional gas cost for this as well as the instructions
executed for the checks is reasonably modest. Caching
for blockhash is not implemented and that would allow

16

longer length leashes while increase costs slightly.

	1 Introduction
	2 Threat Model
	2.1 Terminology / Setting
	2.2 Adversary Capabilities
	2.3 Security Assumptions

	3 Short Leashes
	3.1 Notation and Terminology
	3.2 The Block Tree
	3.2.1 Blockchains are Long Skinny Block Trees
	3.2.2 Making Side Chains / Branches Infeasible

	3.3 Short Leash Approach
	3.4 Dealing With Hard Forks
	3.5 Interaction with Checkpoint / Replay
	3.6 Implementation Approaches
	3.6.1 VM Changes
	3.6.2 Wrapper Contracts
	3.6.3 A Contract For An Extended BLOCKHASH
	3.6.4 A General Leash Gateway Contract
	3.6.5 Transaction Proposal Metadata
	3.6.6 Non-Ethereum Compatible Blockchains

	3.7 Extensions and Generalizations

	4 Related Work
	4.1 Forward Secure Signatures
	4.2 Winkle: Voting on Checkpoints and Token Transfer Limits
	4.2.1 Long Range Assumptions
	4.2.2 Incentive Compatibility

	4.3 Using Another Blockchain

	5 Conclusion
	Appendices
	A Winkle Security Proof Issues
	A.1 Notation
	A.2 Sub-sequences
	A.3 Transfer Limits

	B Generic EVM Short Leash Gateway

