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Abstract
Blockchains combine a distributed append-only log
with a virtual machine that defines how log entries are
interpreted. By viewing transactions as state trans-
formation functions for the virtual machine, we sep-
arate the naming of a state from the computation of
its value and reaching consensus on that value. This
distinction allows us to separate the notion of trans-
action order finality from state value finality. Further
consideration of how blockchain governance handles
catastrophic common-mode failures such as zero day
exploits lead us to the notion of checkpoint finality.

Consensus on the transaction order determines the
ground truth. Everything else—computing the value
of a state or handling catastrophic failures such as
bugs / zero-day based attacks—are just optimizations.

1 Introduction

The core ideas behind smart contracts and
blockchain systems are straightforward, based on a
distributed, decentralized append-only log and how
we interpret the meaning of those log entries using an
abstract virtual machine (VM).
While the basic idea is simple, there are many de-

sign choices that need to be made before the full
blockchain system is specified, implemented, and be-
comes usable, e.g., the format of messages that can be
logged and their meaning, the VM state machine se-
mantics, etc. These design choices can have important
implications on how the resultant system behaves.
While practitioners understand the nuances, expli-

cating these notions can make it easier for their impact
to be discussed and for alternative design choices to
be investigated. This paper attempts to use some ba-
sic ideas and notation from programming languages,

The git hash for this paper is 09ce1681ec7d3117bbe446cd-
6030b29202e99c3a.

semantics, and group theory to help model smart con-
tract systems as a way to guide how we look at these
design choices, the security issues that arise, and their
scaling implications.

We introduce the following distinct flavors of final-
ity:

• log finality, when an entry has been irrevocably
appended to the blockchain log.

• transaction order finality, when a transaction’s ef-
fect on the VM state is irrevocably determined,
without necessarily first computing it.

• state value finality, when the computed state value
is determined as an efficiently accessed data struc-
ture. This is irrevocable except for recovery from
critical infrastructure failures (determined by gov-
ernance), e.g., an adversary exploits a bug in code
used by all participants or an adversary was able
to violate a security assumption, such as bribing
an above-threshold number of committee partici-
pants.

• checkpoint finality, when the computed state value
can no longer be changed by hard forks and thus
becomes truly irrevocable.

We argue that transaction order finality, built using
log finality, is the key to reasoning about a blockchain
system. State value finality and checkpoint finality
are nonetheless important optimizations: they respec-
tively enable application for which independent pri-
vate state determination is too expensive and permit
the storage layer to reclaim storage.

In the next section, we present the ideas, notations,
and terminologies that we use to analyze blockchain
properties and use them to discuss some well-known
blockchain systems and their properties. Then, in Sec-
tion 3, we discuss what we think are “ideal” rollup
properties and attempt to sketch what such a system
would be like. Finally, we present concluding remarks
in Section 4.
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2 Key Concepts
In this section, we introduce ideas, notation, and ter-
minology used to describe and delineate the design
space of smart contract systems, using some exist-
ing well-known systems as reference points. Applying
these ideas will help us create a simpler, easier-to-
understand mathematical / mental model of what all
blockchain systems do, and to discuss / analyze trade-
offs in current and future designs. These notions apply
both to standard blockchains as well as to scaling so-
lutions such as rollups.

2.1 Append-Only Log
The append-only logs used in Bitcoin and Ethereum
v1 are Proof-of-Work (PoW) based designs, whereas
those used in Ethereum v2, Cosmos, Polkadot, Oasis,
etc are Proof-of-Stake (PoS) based designs.
At the level of abstraction needed here, the only

thing that we care about is that the append opera-
tion for a PoW log is probabilistic, and an entry is not
considered successful until about 6 additional entries
have been made (the distance to the end of the chain
is a security parameter here). Typically the idea for
needing additional entries in PoW is called “proba-
bilistic finality”.
PoS logs use committee elections and digital sig-

natures instead of solving cryptographic puzzles, and
once the consensus protocol completes and a new log
entry is made, it is considered final. While it takes
time for the consensus protocol to run, no additional
entries are required and this is often referred to as
“instant finality.”

We will refer to the general idea as “log finality,”
whether probabilistic (with appropriate security pa-
rameter) or instant. Log finality is the mechanism
upon which other notions of finality is built: log final-
ity only says that some entry is successfully appended
to the log, but says nothing about what that entry
means.

2.2 Virtual Machine State
Since “state” can be encoded and represented in many
ways, we need to start with mathematical necessities
to describe what we mean by “state” in a way that
is divorced from any particular representation. By
“state”, we mean a function from a key set, its do-
main, to a value set, its range, i.e., State : Key→ Value.
In Bitcoin, Key would essentially be public keys, and
Value would be numbers representing the quantity of

Bitcoin tokens under the control of the corresponding
private keys. In Ethereum-like systems, Key would be
a union of several disjoint sets, e.g., public key hashes
associated with Externally Owned Accounts (EOAs),
contract addresses, contract address and 256-bit ad-
dress tuples for naming persistent store locations, etc.
Correspondingly,Value would be public keys, EOA bal-
ances, contracts’ code and balance, and 256-bit values
from contracts’ persistent store, etc.1

2.3 Transactions As Curried Func-
tions

Users of blockchain-based systems propose transac-
tions that are recorded by being appended to the
blockchain. We normally think of transactions as
altering state. In a mathematical description, they
are functions that transform state, i.e., State →
State. Smart contract entry points take arguments—
in Ethereum, the callData—and does not fit this
type signature; however, by currying all the user-
supplied arguments including authorization informa-
tion (msg.sender, etc), all transactions can be mod-
eled in this manner.2
Depending on the smart contract system and the

type of analysis we need to do, we may need a
model that exposes more structure of transactions.
For example, it is useful to model an Ethereum(-
like) transaction t as two component functions: first,
tc : State → State⊥, representing the call into a con-
tract entry point, returning an updated state mod-
eling the effects of the contract code execution on
contract persistent storage (no change if the trans-
action aborts, with ⊥ representing non-termination);
and second, tg : State→ N⊥ representing the gas con-
sumed from execution (until either commit or abort),
returning ⊥ if gas limit would be exceeded (including
non-termination). The function t is then the following
composition of tc and tg, with ab representing the key
for the balance for account a (which is msg.sender
for t) and store update notation from semantics:

t(s) =
{

[ab 7→ s(ab)− gaslim · gas$]s if tg(σ) = ⊥,
[ab 7→ tc(s)(ab)− tg(s) · gas$]tc(s) otherwise

This is a useful separation since most contract virtual
machines implement standard ACID transaction se-

1This is just one way to model Ethereum state; other models,
e.g., as a set of mappings one for each key type, would be more
precise.

2Not all state transformations are valid transactions, e.g., a
state transformation that changes a contract’s state in violation
of its code invariants.
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mantics, and an explicit transaction abort reverting
the contract state (failure atomicity) is just tc return-
ing its input state, though gas fees for computation
performed until the abort must still be paid.

2.4 Natural Names of State
Because users think of their transactions as being ex-
ecuted in a strict serial order and submit transactions
based on their model of what the current system state
(e.g., their EOA balance), a natural way to refer to
any reachable state is the sequence of transactions
that yields that state.

2.4.1 Names And Composition of Transfor-
mations

Transactions are state transformations, and trans-
forms form a group under function composition. We
use the “;” function composition notation from pro-
gramming language semantics, so we write the state
after the jth transaction as sj = (t1; t2; · · · ; tj)(s0).
For a state s that is reachable via a sequence transac-
tion from genesis, we call “t1; t2; · · · ; tj” (one of) its
“natural name(s).”

Note that for Bitcoin, Ethereum, and Arbitrum,
the natural name is exactly what is recorded on the
blockchain. Other smart contract systems may only
implicitly record the execution order, e.g., as part of
a zkSNARK proving correct execution.

2.4.2 Names Are Not Unique

Note that names are not unique. Many states have
multiple names. If two transactions f and g com-
mute at a given state s, i.e., the resultant state is
(f ; g)(s) = (g; f)(s), then there are (at least) two
names for the resultant state. Of course, if both f
and g were proposed, the system will eventually de-
cide on some order. This is analogous to how 0+1+2
and 0 + 2 + 1 are both ways to name the value 3.
Note also that some states have no names in this

nomenclature. For example, a state where an EOA
controls more tokens than the total token supply is
unreachable, since (absent a catastrophic bug) there
are no sequences of transactions from the genesis state
that would result in such a state. This is fine, since
such unreachable states are of no interest.

2.5 Ground Truth
Ground truth for smart contract / blockchain systems
is knowing what the current state is supposed to be.

This does not mean, however, that we must have an
efficient representation of that state, merely that it is
computable—efficiently, and unambiguously. We ar-
gue that the most natural definition for blockchain
system state is based on consensus agreement on the
order of all transactions since the genesis state (or
since a checkpoint state, see Section 2.7).
Once a transaction’s parameters are logged (has

achieved log finality), its execution order relative to
earlier logged transactions is determined. Via a sim-
ple inductive argument, since the input state is com-
putable by the execution order finality of earlier trans-
actions, the resultant state from this transaction can,
in principle, also be computed. We call this “transac-
tion order finality.”
Consensus about the current state is based on

states’ natural names, and computing an efficient rep-
resentation is not necessarily coupled with this deci-
sion. Everything else is an optimization.

2.6 Efficient Representations of State
All blockchain-based systems use an append-only log
to record ground truth. From those log entries the
system determines the consensus reality on the state
of one (or more) virtual machines. However, different
blockchains handle state differently.

Bitcoin only records transactions in the blockchain
blocks. The VM is relatively simple and the state
is the number of tokens controlled by public keys—
the so-called Unspent Transaction Outputs (UTXOs).
The logged messages specify how to transfer tokens
using the VM rules, but state is implicit. In contrast,
Ethereum also records a representation of the new
state that results after all the transactions named
within the block are applied to the state from the
previous block. This state is recorded via a crypto-
graphic commitment—the “stateRoot”, which is the
root hash summary of the Merkle Patricia trie rep-
resentation of the Ethereum Virtual Machine (EVM)
state. Hyperledger [1] takes a Bitcoin-like approach
and leaves the interpretation of results—the effect on
the VM—to clients.

Note that Bitcoin miners must also have an efficient
representation of state, since in order to verify new
blocks double spending checks etc must be performed—
it is just that this state does not show up on-chain.
Availability is separate from permanence: in either
case, miners has to either “catch up” by replaying
transactions since a checkpoint (more on that later)
or obtain a copy from somebody else. Apart from re-
playing transactions, there is no way for Bitcoin min-
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ers to verify state obtained from an untrusted party;
Ethereum miners, on the other hand, can readily ver-
ify the Merklized data structure (stateRoot).
Rollup systems use an existing underlying

blockchain as a security anchor to allow “off-chain”
execution, where smart contract code executes in a
separate VM (“rollup”), so that many transactions
can execute there while requiring fewer (or cheaper)
transactions at the underlying blockchain. This is an
attractive scaling solution, since (presumably) compu-
tation on the rollup is cheaper, and a single underlying
blockchain can support multiple rollups. Optimistic
rollup designs like Arbitrum [8] commit the trans-
action order to a bridge contract in the underlying
blockchain, computes the resultant state in the rollup,
and sends that result to the bridge contract in the
underlying blockchain to validate. We will discuss var-
ious validation schemes later (see Section 2.10); the
key observation here is that transaction order can be
determined in a separate step from state computation.
Another way to think of this is that the resultant

state from the execution of a transaction t is named
once we have the order of all transactions starting
from the genesis state up to and including t. We may
not yet have computed that state as a data structure
that allows the key-value lookup to be performed effi-
ciently, but there is no doubt what that state would
be—everyone given its name will arrive at the same
abstract mapping, even if its concrete representation—
actual choices of data structures—may differ. Bitcoin
only names the current state.3 Ethereum-like systems
both name and compute one particular representation
of state. Some rollups separate naming from state com-
putation, where the transaction order is committed to
the layer 1 blockchain first, and the correct resultant
state is computed off-chain, in the layer 2 rollup, and
committed to layer 1 at a later time. Other rollups use
a mempool design for the rollup, so that the transac-
tion order is determined by rollup nodes rather than
in the underlying blockchain, and that order is com-
mitted along with the computed state hash. Such a
design reduces the number of transactions in the un-
derlying blockchain, trading off reduced transaction
processing cost there for tight coupling between trans-
action order finality and state determination.

The separation of concerns should be explicit. The
consensus layer is responsible for making an im-
mutable, append-only log. Its primary purpose is to
record the transaction—the calldata—in the order in

3Though states are realized periodically, when checkpoints
are created. See Section 2.7 for more details.

which they are to be executed. This names the resul-
tant state, and everything else is secondary. Comput-
ing and agreeing on this state can come later, as fulfill-
ing a promised value. The result—a correspondence
between a named state and the state representation—
can be similarly recorded to make state representation
sharing easier. That is to say: Bitcoin logs only ex-
ecution order; Ethereum logs both execution order
and an efficient representation of the resultant state
in a tightly coupled manner; decoupled layer 2 rollup
designs, on the other hand, logs both but separately,
so that problems with the validity of the computed
state does not necessarily invalidate the committed
transaction order.
Note that it is important to calculate state and

to reach consensus on it, since blockchains are not
closed systems: transfers between rollup and underly-
ing blockchain is an example of external actions that
depend on state; in general, any contracts that can
cause off-chain effects, such as the shipment of goods,
require consensus and state value finality.
In our view, obtaining an equivalent but more effi-

cient representation of a given state is an important
optimization. Indeed, committing the transaction ex-
ecution order yields one sense of finality—transaction
order finality, allowing us to name a committed state.
Computing the stateRoot and reaching agreement on
the result yields a second sense of finality—“state
value finality”, allowing us to confidently use the
state’s value or representation.

2.7 Checkpoints
Replaying all transactions from genesis is expensive
and as a blockchain system is used it quickly becomes
prohibitively so for new participants wishing to join
the system. The storage cost of the blockchain blocks
grows linearly over time, and for Ethereum maintain-
ing any sort of availability for old trie state can become
quite expensive. In the past, Bitcoin performed a sort
of uber-commit by releasing new clients with “check-
points”, where the state at some block height is built
into the client. Blocks with lower block numbers can
be safely discarded, since everyone has a state—the
checkpoint state—from which to replay newer transac-
tions. Bitcoin has since removed checkpoints because
it was viewed as creating confusion/misconceptions
around the security model.

In addition to reducing the entry cost for joining the
system, checkpointing reduces the cost of record keep-
ing for existing participants. This is a “meta” level of
finality: the effect of transactions that landed prior to
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the checkpoint cannot be disputed, since the records
associated with them are likely to be unavailable.

Beyond cost of entry or on-going operational costs,
checkpoints are also used in conjunction with gov-
ernance mechanisms for catastrophic error recovery.
Many blockchain systems that have experienced prob-
lems, e.g., massive token losses due to bugs in critical
blockchain code or smart contracts, have resorted to
hard forks to recover from such errors despite transac-
tions reaching state finality; checkpointing too soon—
if records older than checkpoints are not kept around—
would prevent recovery by reverting to the checkpoint
state and (optionally) re-executing (using fixed ver-
sions of the code, etc) transactions in their original
logged order.

2.7.1 Checkpoints vs Long-Range Attacks

Note that checkpoints addresses a different problem
than long-range attacks. In long-range attacks, we are
worried about exposure of old cryptographic signing
keys used by past consensus committee members in
a PoS design [2]. Such members may have exited the
ecosystem and their old keys are no longer handled
carefully; worse, such past members may rationally
decided to auction their signing keys on the dark web,
since they no longer hold any tokens and have nothing
to lose. Such keys are useless when used to present bo-
gus information to blockchain participants that know
the current committee composition and have been
tracking transactions and committee elections. How-
ever, consider a threat model where a Rip van Winkle
victim wakes up after a period of inactivity and is
somehow placed in an Inception style virtual world /
faux information bubble. That bubble filters out legit-
imate information about a PoS blockchain’s current
state and instead only makes available information
constructed to make a forked chain—made feasible
due to a super-threshold number of exfiltrated/com-
promised keys of members from an old consensus com-
mittee [2].

The Inception information bubble is an interesting
threat model. If applied to PoW blockchains, a victim
cannot know if the chain that they see is indeed the
longest chain—the “longest” predicate amounts to a
universal quantifier, and global information is needed.
Estimates for how long the chain should be might be
feasible if there is trusted time, but that’s probabilis-
tic in nature: block production rate depends on both
protocol parameter changes and the number of active
miners, which has more to do with the economic at-
tractiveness for participating (relative to all other in-

vestments) than with computation power limitations.
Furthermore, such a length estimate only applies to
the whole chain segment since the victim fell asleep
and does not help much with the “longest” predicate
since the fork can be quite recent.

Without Inception-like powers to mount eclipse at-
tacks [6], an adversary should be unable to confuse
potential victims. A potential victim can verify that
they have a current view of the blockchain: they just
securely query N sources for the hashes of recent
blocks on the chain. If a majority M of these hashes
are on the same chain and these sources are honest,
not eclipsed, and have continued to be blockchain ob-
servers , the potential victim will be able to distinguish
the global consensus chain from a forked chain cre-
ated with long-range leaked keys. Here M ≤ N is a
security parameter, which can be chosen so that the
Inception-esque adversary will have to additionally
compromise prohibitively many more keys (or their
holders) than just those of old consensus committee
members, since any blockchain observer can witness
recent blocks and thus N can be much larger than
the size of a consensus committee.

2.7.2 Zero-day Attacks / Common-mode
Failures

Checkpointing is intended for addressing the handling
of relatively recent zero-day attacks where a super-
threshold number of the current consensus commit-
tee members have been compromised, or a newly dis-
covered vulnerability in the rollup software is being
exploited. We do not envision it being useful for han-
dling attacks that had not been noticed for a long time,
since any actual means of addressing it will be com-
plicated. The cascading causal relationship of newer
transactions depending on the output states of older
transactions is likely to lead to an explosion of trans-
actions that will be aborted in a new interpretation
of their effects when they had successfuly committed
before.
The design decision is whether to perform check-

pointing at all, and if so, how old—in real time, block
numbers, etc—must a finalized transaction be before
it might be included in a checkpoint. This decision is
essentially the blockchain version of a statute of limi-
tations in many legal systems. Unlike normal statutes
of limitations that specify a time limit that is specific
to the type of crime—and for some crimes there are
no limits—here the checkpoint is global in scope: all
transactions, regardless of which contracts they might
be associated with, have to be treated the same way.
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In our mathematical model, deciding / making a
checkpoint is essentially choosing a state and “hard-
coding” the association between its natural name
(or block number) and a specific value in a com-
mon, efficient representation. The treatment of check-
points is analogous to how the genesis state s0’s
value is hard coded in the system. Periodically, a
state scj that has been long finalized is chosen to
become a checkpoint, where c0 = 0, cj ≪ cj+1, and
scj+1 = (tcj+1; · · · ; tcj+1)(scj

). For all intents and pur-
poses, the checkpoint state behaves like the genesis
state; after the checkpoint creation, state names can
be specified relative to the checkpoint.

The checkpoint’s state / value association is a tem-
poral barrier: transactions earlier than the checkpoint
have “checkpoint finality”, since records that would
enable their replay in the alternate bug-fixed environ-
ment are unavailable. Note that unlike transaction
order finality and state finality which typically occur
at the same time as when their log entries are made,
i.e., at log finality, checkpoint finality could occur long
after the identification of a state as a checkpoint can-
didate. For example, a system could log that a state
will become the next checkpoint once the blockchain’s
block height reaches a certain value (which is expected
to occur in about six months, say) or when a quorum
of time oracles attest that a certain date has been
reached. The log entry makes the decision irrevoca-
ble, but checkpoint finality does not necessarily occur
until other gating conditions are met.

Separating state finality from checkpoint finality to
handle the possibility of catastrophic failures intro-
duces risk for those who need to take actions external
to the rollup based on state finality. External actions
cannot always be rolled back. We believe that this can
be handled using an insurance model: for example, an
insurance policy based on the type of external action
and risk profile could be offered to make participants
whole, should a checkpoint/replay invoked due to a
catastrophic failure cause the proper external action
to change.

2.8 Execution Parameters: callData
When we name states via transaction order, it is a
“natural” name as a sequence of state-transformation
functions as applied to the genesis or a checkpoint
state. The state-transformations must be fully speci-
fied, i.e., the transaction data (callData) are function
parameters to the transaction call that, when curried,
allow us to view the transaction as state transforms.
In order for the commitment of transactions to

make sense, it must include all callData for the state
to be computed. This is a data availability require-
ment. Transactions (their callData) does not have to
be directly in the blocks, though that is the simplest
design choice. If a highly available data repository, i.e.,
a data availability layer (e.g., IPFS [3]), can be used,
then lists of transactions can be stored there and the
on-chain data can simply be the name by which the
transaction list can be obtained.

Here, feasibility must include some notion of verify-
ing data availability, e.g., signatures from a quorum of
availability providers. It is not enough to use a simple
content-addressable storage (CAS) without availabil-
ity guarantees, since otherwise we face the following
dilemma when an adversary computes the CAS name
without actually making the data available. In such
a scenario, we either sacrifice liveness, having to wait
indefinitely for the callData to become available, or
try to use timeouts and treat unavailable callData as
implicit aborted transactions and move on. This latter
choice sacrifices finality: a user can nullify their trans-
actions after the transaction’s execution order has
been decided—by making their callData unavailable—
if the user decides that the execution order is not
to their advantage, so until state finality has been
reached, transaction order finality does not uniquely
specify a resultant state.
Note that Ethereum’s stateRoot has a symmetric

CAS availability problem. The state output from a
transaction is needed as input to the next transac-
tion, and a lack of availability here means that the
new state’s representation cannot be easily computed,
destroying liveness.4

2.9 Execution Ordering
Execution ordering can be quite important, since any
given two state transforming functions might not com-
mute with each other. The notion of “front running”
is not new with blockchains but has been unethically
(and illegally) practiced in stock and commodities mar-
kets [12]. Front-running uses the ability to influence
execution ordering results, where additional orders are
injected in front of (and often also behind) orders that
may move the market. For example, if Trey submits
a transaction g to buy a large amount of some com-
modity, it is likely to cause a price increase (“move
the market”). If Fanny knew about his order and can
inject in a pair of transactions to sandwich his: the net

4Obviously the input state can be reconstructed by transac-
tion replay, but that is not efficient.
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is a pseudo-conjugate transaction g′ = f ; g; f∗, where
f denotes a transaction to buy the same commodity
at market price, and f∗ denotes a “pseudo-inverse”
transaction to sell the same amount, at what will be a
higher market price, to exit the market and reap prof-
its.5 In Bitcoin, Ethereum, and most layer 2 rollup
designs, the (layer 1) miners choose transactions from
a mempool of proposed transactions and can choose
and order transactions within the new block in any
order that they want.
Ideally, transactions that offer approximately the

same gas fees should perhaps be handled on a
first-come, first-serve basis, with the order decided
based on approximate timestamps. Standard Bitcoin,
Ethereum, and rollup designs are all vulnerable to or-
der conjugation, though there are research on ways
to maintain fair ordering for some definition of fair-
ness [9, 13, 4].

How to decide on an execution ordering is a largely
orthogonal design decision. The scheme used in Bit-
coin and Ethereum (v1) is leaderless and probabilis-
tic, since miners can independently choose the trans-
actions to include in the blocks they mine. For L2
rollups with decoupled ordering and state value deter-
mination, the transaction order can be determined in
many ways: (1) as a “null hypothesis”, in L1 submis-
sion order (susceptible to L1 front running); (2) via
trusted off-chain schedulers that (fairly) order batches
of transactions; (3) via trustless decentralized applica-
tions on other blockchains that perform batch schedul-
ing, using commit-reveal of transaction details to pre-
vent biased ordering; etc. The potential design space
is large, and exploring this is on-going research.

2.10 Deciding on the Correct State
The mechanism by which the correct state is decided
is security critical. There are many different design
choices that have been explored, with different secu-
rity assumptions and scaling efficiency. By security as-
sumptions, we mean not only common cryptographic

5The notion of conjugacy from group theory captures the
idea of frontrunning, f∗ is not the inverse because transac-
tions are not invertible: gas fees must be paid. Furthermore,
the transactions occur at the market price and the portion of
state representing the token balance for Fanny would not re-
turn to its original value—the point of front-running is to make
money! Because of this, we say that f∗ is a “pseudo-inverse.”
Additionally, if Fanny wants to hide her activities the trail-
ing transaction could, for example, sell a smaller amount to
reap most of her profits without completely exiting the mar-
ket, making identifying and matching the leading and trailing
transactions difficult.

assumptions (e.g., one-way functions), but also com-
pute resources such as hashing power and monetary
resources such as control of some fraction of the total
stake. By scaling efficiency, we mean both in terms
of normal resource usage and in terms of resources
needed to achieve a desired level of security. Table 1
shows several different rollups and their state transi-
tion security mechanisms.

Rollup Base
chain

Security VM
Types

Arbitrum Ethereum Multi-round
fraud proof

EVM/AVM

Oasis Oasis
consensus
layer (Ten-
dermint)

Bare-metal
fraud proof

Rust
(Wasm),
EVM,
(extensible)

Optimism Ethereum One-round
fraud proof

EVM

StarkEx Ethereum Validity
proof

Swaps

ZKSync Ethereum Validity
proof

Transfers

Table 1: Comparison of Different Rollup Designs

2.10.1 Proof of Work

While Bitcoin uses a PoW-based log, there is no ex-
plicit decision to be made about the correct state since
no state is recorded.
In Ethereum v1, PoW is used and hashing is the

resource bottleneck. All miners are validators, and the
security assumption is that malicious actors cannot
control more than half of the hashing power or mount
a “51% attack.” Here, validation means re-executing
the transactions to verify that the new stateRoot
matches. Invalid blocks are ignored and not consid-
ered as extending the chain.
One issue is that even though it appears that all

miners independently validate transactions, the in-
centives for rational miners are to behave otherwise.
Because the execution order and stateRoot must be
placed in the same block and thus are tightly coupled,
there is a performance advantage for small miners
to join together and form a mining pool/cooperative.
Rather than individual miners re-executing transac-
tions from the block to compute the stateRoot, a min-
ing pool could compute the stateRoot once on the
pool’s fastest machine, and then devotes all of their
compute power to solving the hash puzzle. This obvi-
ously also centralizes what would have been replicated
transaction executions, robbing the system of the de-
gree of independent verification represented by the
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mining pool members.
This is not (yet) an acute problem, since hashing

costs dominate that of VM execution to process the
transactions, and the savings from sharing stateRoot
is not significant. The incentive to do so increases
if/when the gas limit becomes high enough so that
VM execution cost becomes noticeable.

2.10.2 Proof of Stake

Ethereum v2, Cosmos, etc are PoS based blockchains.
All consensus committee members are also valida-

tors, and the security assumption is that malicious
actors cannot amass more than a supermajority (usu-
ally 2/3) of the total stake. Validators earn block
rewards. Stake-based voting and reward distribution
remove most of the incentives to mount Sybil attacks,
but does not address other attacks such as exploiting
zero days, which are common-mode faults.

2.10.3 ZK Rollups

Zero-knowledge (ZK) rollups use zkSNARKs to prove
the correctness of the rollup virtual machine execution.
Because security proof verification is involved, a single
honest verifier is enough to keep the executor/prover
honest.
The key idea is that proof verification is very

cheap; thus, the security parameter for the num-
ber of validator—proof verifiers—can be easily in-
creased. Unfortunately, proof generation is relatively
expensive, so while payment transactions are feasi-
ble (ZCash [7]), the case for general smart contract
computation is more difficult. Proof generation for
Ethereum-style computation is being developed/re-
searched (zkEVM [11]). It remains to be seen how
good a scaling solution this represents, since the
rollup where the proof generation occurs may be
slow/resource intensive, so even though the underly-
ing blockchain might be able to run bridge contracts
for many ZK rollup rollups, the aggregate through-
put and efficiency may still be insufficient for general,
complex applications.

The proof verification algorithm takes time to run.
This should be done within the bridge contract, and
the typical description of ZK rollups is that an in-
valid proof is treated as if no proof were submitted,
i.e., bridge contract aborts the faux proof submission
transaction. As long as there is enough replication in
the underlying blockchain so that the consensus there
reflects the correct execution of proof verification, the
security of the rollup is guaranteed.

2.10.4 Optimistic Rollups

In optimistic rollups, validators are any entity that can
re-execute the transactions and compare the resultant
state. An executor commits its result as a Disputable
Assertion (DA) to the underlying blockchain, and any
validator that finds a discrepancy can issue a chal-
lenge (and the validator becomes a challenger). After
dispute resolution, if the DA is found to be incorrect,
the executor is slashed and the successful challenger
earns a reward. This means a single honest validator
is enough to keep the executor honest.
Validators must be given time to re-execute the

transactions and to generate challenges. Because re-
execution is more expensive, this can create a signifi-
cant delay for state finality: a DA is only considered
accepted when the disputation period has passed. The
appropriate length of the disputation period depends
on the maximum gas allowed in a rolled up batch of
transactions and other factors; current designs allow
as much as a week.

In Arbitrum, users are expected to not have to wait
for the disputation period, based on the notion of
“trustless finality”. The scenario is that a user has sub-
mitted a transaction and it is in-flight: a DA includes
it, but the disputation period has not yet passed. The
user wishes to propose a new transaction that depends
on its result. If there are doubts about the DA, the
user might be hesitant to propose the new transac-
tion. The argument is that since the user could act as
a validator and re-execute all the transactions leading
up to the DA and thus independently validate their
mental model of system state, they should be able to
freely submit their new transaction proposal. This is
essentially using transaction order finality: users trust
the underlying blockchain’s recording of the rollup
transaction order and that the VM is defined and
implemented correctly to be deterministic.
Another argument is because having multiple ex-

ecutors/validators is feasible. Here, they can post ad-
ditional DAs (for new transactions) that depend on
earlier DAs that have not yet reached state finality.
These additional DAs provide additional assurance
that the earlier DAs are correct, since presumably the
new dependent DAs have validated the earlier DAs.
Currently, Arbitrum has a single centralized executor,
though anyone can be a validator/challenger.
Verifiers suffer from the verifier’s dilemma [10, 5].

Even though proof verification might be cheap, it is
cheaper still to assume that somebody else has done
the verification, when the odds that an executor will
try to cheat appears to be low.
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2.10.5 Bare-Metal Fraud Proofs

The bare-metal fraud proof approach is a traditional
fast-path / slow-path approach seen in systems design,
where the fast path efficiently handles the common
case, with a slower path that acts as a fallback for
the uncommon case(s). Here, a single honest node
in the fast path suffices to trigger slow-path verifica-
tion. It as agnostic with respect to the rollup VM,
since there is no need to single-step VM execution to
find exactly where an error occurred. To understand
the bare-metal fraud proof approach, it is useful to
understand the system architecture.

The bare-metal fraud proof approach can be viewed
as a form of optimistic rollup, but with a committee
of nodes executing in parallel verifying each other
rather than taking the executor vs challenger view.
The VM execution of smart contracts is separated
from consensus. There are two types of committees: a
consensus committee executing a consensus protocol,
and one or more compute committees executing the
VM—similar to rollup executors running smart con-
tracts off-chain—doing the heavier lifting of general
smart contract execution. The consensus layer records
the resultant VM state from the compute committee.
Unlike the consensus committee which runs a sin-

gle consensus protocol, we view the compute layer as
running two protocols: the fast-path protocol of dis-
crepancy detection (DD), where we can use a smaller
sized primary committee; and the slow-path protocol
of discrepancy resolution (DR), where a (much) larger
backup committee would be used. The goal, which is
justified by the security parameter calculations (see
Appendix A), is to use small primary committees with-
out compromising security. This is the source of the
efficiency improvement of the bare-metal fraud proof
approach: the amount of replicated computation is
significantly reduced in the fast path, with an incen-
tive design such that the slow path should never be
used.
Note that transaction ordering is an orthogonal

design decision from the use of DD/DR. It can be
decoupled and committed to the consensus layer as
separate log entries prior to smart contract execution,
or a leader from the compute committee could be
selected (possibly rotating) to choose an execution
order from the available transaction proposals.
However execution schedules are determined, all

members of the compute committee run in parallel
and determines the state that would result from the
execution of a batch of transactions. Compute com-
mittee members sign their computed output states.

Equivocation is punished by slashing stake like in
many consensus designs, and we will assume that each
committee member will sign at most one state as the
result from the execution of a batch of transactions
henceforth.

The key idea behind DD is that when all compute
committee members agrees on the resultant state, we
can commit it to the log, and this is secure as long
as the size of the primary compute committee has
enough members so that the probability that none of
the reporting members are honest is negligibly small.
If there is any disagreement among the primary com-
mittee member, we do not know which of the reported
output states is correct—this is the key difference from
other state validation schemes: DD only performs er-
ror detection and not error correction. Instead, we
switch to the DR protocol with the larger backup
committee, and that output state is deemed to be the
correct one. In essence, the DR protocol is a param-
eter to the bare-metal fraud proof approach: the DR
protocol can use a much larger committee—even all
available nodes—and use much more resources. Be-
cause those DD nodes that reported a differing out-
put state from that determined by DR will have their
stake slashed, there is no incentive to deviate from
the protocol unless the adversary can either control
the entire DD committee or enough of the backup
committee for DR to fail.
Note that the choice of DR does not have to only

involve larger committees: we could use a bisection
algorithm to find the single VM instruction at which
the computation of the two (or more) resultant states
first diverged [14, 8]. While this approach is great
from an algorithmic standpoint, it is challenging to
implement since the entire VM instruction set must
be re-implemented in the bridge contract to see which
instruction executed incorrectly and thus resolve the
discrepancy. Maintaining VM agnosticism allows the
system greater flexibility: a VM can be designed to al-
low the VM programs to be compiled to (sandboxed)
native code, allowing applications such as data anal-
ysis that is not currently feasible on blockchains or
rollups.
The consensus layer accepting and committing a

state from DD/DR yields state finality. Just as an
exploit using zero-day vulnerability/bug in imple-
mentation would be a common-mode failure in all
blockchains is handled using replaying transactions
from checkpoints, external challengers can provide ev-
idence of malfeasance even when DD/DR fails. In such
a scenario, the transactions since the last checkpoint
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(or the disputed point) is replayed in the same order,
using software with bug fixes applied, to compute the
correct state.

The Oasis network is a blockchain system that uti-
lizes the bare-metal fraud proof approach. Multiple
rollup VMs or “ParaTimes” are supported. Transac-
tion ordering is handled via a mempool, and a rotating
leader in the compute committee chooses the transac-
tion order in its transaction batch. This reduces the
number of consensus transactions since transaction
order finality is not critical when the rollup execu-
tion is fast, though decoupling can be introduced in
later iterations as needed. The Oasis ParaTime archi-
tecture, where the compute layer results are subject
to DD/DR before being committed to the consensus
layer, is a minimal rollup design: the bridge contract
that validates the rollup VMs is baked-in and only
supports DD/DR validation, keeping the consensus
layer simple.

3 Ideal Layer 2 Design
The ideal rollup design allows efficient (off-chain) ver-
ifiable computation with fast finality. Here, efficiency
means:

• Reduced replicated computation. We do not want
to use resources, e.g., use an enormous amount of
electricity, when it is unnecessary for the required
level of security. Reduced replication should also
reduce the cost per transaction, making the sys-
tem more scalable from an economic perspective.

• High confidence in results. This is the converse to
replication: users should be able to trust the re-
sults from the verified computation, even though
the replication factor might be lower.

• High throughput. The overall system throughput
should be high, so that the system will perform
well with a high workload.

• Low latency. Proposed transactions should not
have to wait too long in queues. Users should
have reasonable confidence that once a transac-
tion is accepted, it will have the desired/expected
effect.

What an “ideal” design might look like depends
on other factors, such as the expected workload. For
example, as systems become more capable, will appli-
cations need to run larger transactions that have a
high gas limit? What is the distribution of execution

times? With a design that separates transaction or-
der finality and state finality, as long as the average
transaction processing rate is sufficient, the system
should be able to tolerate occasional high execution
time transactions, since users will primarily care about
transaction order finality, assuming that the expen-
sive transaction do not interfere or interact with most
users’ contracts’ state.
This is still an area of research and some design

constraints are unknown. We present a sketch of an
“ideal” design below.

3.1 VM Job Queue and Transaction
Order Finality

The ideal rollup design uses “instant” finality of a PoS
blockchain (e.g. Tendermint, Eth2) to obtain transac-
tion order finality. That is, transaction proposals are
essentially jobs entered into the virtual machine job
queue; once entered into the queue, its order is final.
This implies that the transaction callData cannot

be validated with full virtual machine semantics, since
that requires close coupling between the log and the
virtual machine. One extreme design choice is to al-
low arbitrary messages to be logged to target the
VM’s job queue, and rely on the cost of logging to
deter denial-of-service attacks. This means, however,
that the cost of VM execution to verify and discard
ill-formed message (e.g., unsigned, unparseable, non-
existent contract entry points, etc) must be included
as part of the cost of message handling.
Message posting has to cost something in or-

der to prevent denial-of-service attacks. This means
some checks must already be done at the underlying
blockchain: the message itself must be signed, and it
must authorize payment from the EOA to minimally
pay for the message posting itself, as well as a (lim-
ited) payment authorization for the VM execution
(gas limit).

Since signature check is effectively a sunk cost, an
alternative is to perform some very simple verification
of proposed transactions:

• Transaction authorization: valid signature on the
proposal.

• EOA account has enough tokens to pay for mes-
sage posting.

• (Optional) EOA account has enough tokens to
pay for the maximum gas payment, using an
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lower-bound estimate from the queue of trans-
actions for which state finality has not been
reached.

The contract call parameters (callData) is just opaque
bytes at this point.
All signed transaction proposals with these ba-

sic checks are considered “well-formed transactions”
(WFTs). Note that we do not perform contract en-
try point-specific type checks or other per-contract
pre-condition checks at the bridge. Well-formedness
does not imply that the message makes sense. WFTs
that do not pass message format checks will simply be
aborted with the sender charged a small gas fee: in our
formalism, this means that the interpretation is that
tc returns with its input state. The same thing ap-
plies for other pre-conditions: those would be checked
by the contract code (e.g., the equivalent of require
checks in Solidity) and similarly cause the transaction
to be aborted. This conforms with the decoupled na-
ture of the system design: the bridge contract does
not know what (possibly new) contracts have been
instantiated on the rollup, and doing typechecking
would be impractical.

Contract invocations in Ethereum-like blockchains
are internally structured as essentially remote proce-
dure calls, with a message that must be (partially)
parsed to identify the intended entry point and dis-
cover the type signature, and then to further parse
and typecheck the rest of the message. While it might
be reasonable to say that the message encoding is ar-
chitecturally fixed and performed by the rollup VM,
it is feasible—as is done by Solidity for the EVM—to
perform this in the contract code itself (in Solidity’s
case, in the language runtime which performs the RPC
dispatch). Since different contract language runtimes
could, in principle, require completely different data
serialization formats, performing message format ver-
ification in the bridge is infeasible without knowing
details about how each contract’s RPC message re-
ceiver/demultiplexor is implemented.
The simplest design is to view the bridge contract

as accepting WFTs and require runtime checking for
rollup-specific, contract-language specific, or contract-
specific pre-conditions.
The arrival order at the job queue maintained by

the bridge contract does not necessarily specify the
execution order. Clearly, as long as a rollup allows
transaction proposers to offer variable gas fees (as op-
posed to a fixed market rate as a gating threshold),
jobs will need to be sorted by gas price. And while
using gas price as the primary key and arrival order as

the secondary key might approximate a “fair” order,
it allows a frontrunner to trivially creating pseudo-
conjugate transactions by proposing a pair of trans-
actions at a slightly higher and slightly lower gas fee.
More research is needed here, especially since imple-
menting an approximate fair scheduler will introduce
additional latency to the transaction processing.

3.2 Data Availability and Garbage
Collection

The availability of callData and state representation
are both important. From the transactions and the
ordering, we can reconstruct the state value. From a
finalized state, earlier callData is not needed except
for catastrophic failures; from a checkpoint finalized
state, earlier callData is no longer accepted.

While the callData is typically stored on-chain, the
state representation is too large and cryptographic
commitments are used instead. That doesn’t mean
that transaction callData has to be on-chain.

One scenario is that an external trusted fair schedul-
ing service could be authorized to determine transac-
tion order, with the job schedule stored in an external
CAS store with availability guarantees, so that all that
the only on-chain data is a cryptographic hash com-
mitment. The external highly available storage would
have to have service-level agreements to maintain the
data to remain accessible until at least the data ages
beyond checkpoint finality.

The scheduler could run as a decentralized applica-
tion on a separate blockchain. In this case, the schedul-
ing algorithm / code is open for inspection and audit
and does not have to be trusted; its execution would
derive integrity from the blockchain on which it runs,
and data availability derives from the availability of
this blockchain as well.

Rather than using a separate blockchain, the sched-
uler could run on the rollup VM, with the traditional
mempool used only for submitting callData to the
scheduler via job-submission transactions. In such a
design, the callData and transaction order would sim-
ply be stored as scheduler state in the existing decen-
tralized data availability layer. The rollup executors
would have access to the storage services that holds
this and no external highly available data storage ser-
vice would be needed.

With this kind of integration, the normal state
garbage collection mechanism handles reclaiming pre-
checkpoint callData: the scheduler can keep the call-
Data in its persistent storage and only remove these

11



entries after a checkpoint has occurred.

3.3 State Finality

State finality determination is where replicated com-
putation occurs, and where efficiency and computa-
tion integrity appear to be diametrically opposing
goals.

Using reasonable security parameter estimates (see
calculations from Appendix A), we see that if zk-
SNARK proof generation costs more than about 25×
the cost of normal execution, then it will have essen-
tially no replication efficiency advantage, ignoring the
costs of the replicated proof verification. Even if it
could be faster, it increases the time to state finality
as compared to DD/DR, where the rollup commit-
tee members execute in parallel. If we are willing to
move away from EVM compatibility for new smart
contracts, depending on the contract language and
runtime environment design, it should be feasible to
allow smart contract to execute at (near) native code
speeds with comparatively less engineering effort than
proof generation/verification, making the comparison
even more one sided.

More importantly, the DD/DR approach is straight-
forward to analyze and its implementation is much
simpler. Both are critical traits for practical security:
users need to understand why they should trust a sys-
tem; more importantly, complexity is antithetical to
correct, auditable implementations.
Absent a breakthrough in proof generation perfor-

mance, a DD/DR implemented between commitchain
committee and bridge contract provides a good design
choice for security, efficiency, and generality.

Note that just as there is the verifier’s dilemma for
ZK and optimistic rollups, there is a parallel prob-
lem in replicated execution / voting schemes. Execu-
tion piggybacking is a potential problem, where an
executor doesn’t bother to compute their own resul-
tant state but just re-uses the results from another
(hopefully honest) executor. To address this, we could
try to do something like commit/reveal for results, or
have confidential compute requirement for the rollup.
Except for trusted computing style mechanisms, such
approaches are insufficient: a group of rational execu-
tors can collude to save costs. Fortunately, as long as
there is at least one altruistic executor to cross verify,
the DD/DR approach works.

3.4 Checkpoint Finality
DD/DR handles independent failures, e.g., through
bribery of key personnel, bugs in custom deployment
infrastructures, etc. The existence of zero day vulnera-
bilities / bugs mean that there are common-mode fail-
ures. The “traditional” way to address such common-
mode failures—especially when their exploit was large
scaled—is to hard fork and change a checkpoint’s
hard-wired mapping from a natural name to a state
value/representation.

We don’t have a better solution, just (hopefully) bet-
ter terminology / clearer analysis: checkpoints must
lag the current head of the blockchain significantly
to permit detection and recovery from common-mode
failures, but not so far as to make the long-term high-
availability data retention too costly. This is a bal-
ancing act, and the appropriate value depends on the
estimated likelihood of common-mode failures, busi-
ness requirements of dependent contracts, etc.
When to perform a checkpoint should be formal-

ized and made part of the system design and be sub-
ject to change by governance. Storage reclamation
/ garbage collection and catastrophic fault handling
are intimately connected. The checkpoint state repre-
sentation and all newer transaction callData must be
available to allow recomputation of transaction results
in case of common-mode catastrophic faults, but stor-
age for older state representations or callData can be
safely reclaimed. In order for this to work, the servers
in the decentralized data availability layer must be
aware of rollup state, e.g., act as a light client and
observe checkpoint determination events themselves
or rely on witnesses that relay the information.

4 Conclusion
The main contribution of this paper is that transac-
tion order finality should be viewed as the key for
determining system state. Computing an efficient rep-
resentation is just an optimization, since state can
be reconstituted from a checkpoint state and those
transactions that follows it. We identify the following
shades of finality: log finality, transaction order finality,
state finality, and checkpoint finality. These notions are
useful for reasoning about blockchain design and the
design space for error/fault handling, from indepen-
dent faults due to Byzantine actors to common-mode
faults due to zero-day software defects.
Based on considering how and when these finality

properties should be achieved, we developed a prelim-
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inary design sketch for an “ideal” layer 2 system, and
discussed some of the trade-offs.
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A Discrepancy Detection Secu-
rity Parameters

The key security parameter for the discrepancy fast-
path approach is the size of the primary committee
used for the DD protocol. The size of the slow path
DR backup committee depends on the DR protocol
chosen, but it can be chosen generously, since the
DR protocol should be used extremely infrequently.
Any existing state verification protocol can be used,
e.g., consensus based on majority voting, 2/3 super-
majority, etc.
For the DD primary committee, the security as-

sumptions are that faults are independent, e.g., due
to installation-specific configuration errors, personnel
security, bribery, etc; and that at most some fraction
of the available participants are faulty. We will use
a random selection to choose a subset of the avail-
able participants to serve in the primary committee.
Because we are looking for any discrepancy in the
reported output state, this is not a stake-weighted
voting scheme.

Let T denote the total number of available partici-
pants, and B denote the number of faulty or Byzan-
tine participants.6 We need to pick C, the size of the
primary committee.

Our goal is to make the probability that the entire
primary committee are faulty is negligibly small. An
acceptable level would be small enough such that the
expected number of committee formations needed be-
fore an all-faulty committee is chosen is enormous, so
that even with a high worst-case rate of committee
selections, many lifetimes must pass before such an
event would take place.
The combinatorics is reasonably straightforward.

The number of all-faulty committees is
(

B
C

)
, and the

number of possible committees is
(

T
C

)
, so the expected

number of committee selections before an all-faulty
committee is selected is

W =
(

T
C

)(
B
C

)
Since DR schemes cannot work unless there is at

least an honest majority, we will use B ≈ T/2 as
worst-case parameters, e.g., T = 100 and B = 49.
With a committee size of C = 25, this is an expected
W = 3.837 · 109 committee selections. Assuming a

6If we wish to use the BAR model, instead of B we would
use B + R as the worst case to assume that all rational par-
ticipants could be bribed etc, by the virtue of arbitrary token
creation/transfers.
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committee selection rate of 1, 000 per hour, this works
out to about 437 years before an all-faulty committee
is encountered. This ramps up quickly: at C = 26, it
works out to be about 1, 368 years; at C = 30, it is
about 177, 740 years. Obviously if we were to assume
B ≈ T/3, the primary committee can be even smaller
for the same level of security.
An interesting observation is that DD could work

with a pool of participants that are less trustworthy
than would be feasible with other protocols, i.e., where
honest nodes are not a majority, as long as the DR
participant pool is acceptable (e.g. a majority are hon-
est for when DR uses honest majority). Estimating
whether participants are corruptible is difficult, obvi-
ously, and it is not clear why we might have to work
with a faulty-majority participant pool, though the
possibility is intriguing. A possibility is to require pe-
riodic external security audits to participate in the
DR pool, and have less stringent requirements to par-
ticipate in the DD pool.
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