
An Implementation of Ekiden on the Oasis Network
Oasis Protocol Project

Abstract—Smart contracts are applications that execute on
blockchains. Today they manage billions of dollars in value and
motivate visionary plans for pervasive blockchain deployment.
While smart contracts inherit the availability and other secu-
rity assurances of blockchains, however, they are impeded by
blockchains’ lack of confidentiality and poor performance.

We present Ekiden, a system that addresses these critical
gaps by combining blockchains with Trusted Execution Environ-
ments (TEEs). Ekiden leverages a novel architecture that sep-
arates consensus from execution, enabling efficient TEE-backed
confidentiality-preserving smart contracts and high scalability.
We describe our prototype implementation with Tendermint as
the consensus layer.

Another contribution of this paper is that we systematically
identify and treat the pitfalls arising from harmonizing TEEs
and blockchains. Treated separately, both TEEs and blockchains
provide powerful guarantees, but hybridized, they engender new
attacks. For example, in naı̈ve designs, privacy in TEE-backed
contracts can be jeopardized by forgery of blocks, a seemingly
unrelated attack vector. We believe the insights learned from
Ekiden will prove to be of broad importance in hybridized TEE-
blockchain systems.

I. INTRODUCTION

Smart contracts are protocols that digitally enforce agree-
ments between or among distrusting parties. Typically execut-
ing on blockchains, they enforce trust through strong integrity
assurance: Even the creator of a smart contract cannot feasibly
modify its code or subvert its execution. Smart contracts
have been proposed to improve applications across a range of
industries, including finance, insurance, identity management,
and supply chain management.

Smart contracts inherit some undesirable blockchain proper-
ties. To enable validation of state transitions during consensus,
blockchain data is public. Existing smart contract systems thus
lack confidentiality or privacy: They cannot safely store or
compute on sensitive data (e.g., auction bids, financial transac-
tions). Blockchain consensus requirements also hamper smart
contracts with poor performance in terms of computational
power, storage capacity, and transaction throughput. Ethereum,
the most popular decentralized smart contract platform, is used
almost exclusively today for technically simple applications
such as tokens, and can incur costs vastly (eight orders of mag-
nitude) more than ordinary cloud-computing environments. In
short, the application complexity of smart contracts today is
highly constrained. Without critical performance and confi-
dentiality improvements, smart contracts may fail to deliver
on their transformative promise.

Researchers have explored cryptographic solutions to these
challenges, such as various zero-knowledge proof systems [34]
and secure multiparty computation [72]. However, these ap-
proaches have significant performance overhead and are only

applicable to limited use cases with relatively simple compu-
tations. A more performant and general-purpose option is use
of a TEE.

A TEE provides a fully isolated environment that prevents
other software applications, the operating system, and the host
owner from tampering with or even learning the state of an
application running in the TEE. For example, Intel Software
Guard eXtensions (SGX) provides an implementation of a
TEE. The Keystone-enclave project [3] aims to provide an
open-source TEE design.

This document is an updated version of the Ekiden
paper [16], the precursor to this work. Many sections
are retained, where our current and ongoing work are
consistent with the original paper.

A key observation driving our system design is that TEEs
and blockchains have complementary properties. On the one
hand, a blockchain can guarantee strong availability and
persistence of its state, whereas a TEE cannot guarantee
availability (as the host can terminate TEEs at its discretion),
nor can it reliably access the network or persistent storage.
On the flip side, a blockchain has very limited computation
power, and must expose its entire state for public verification,
whereas a TEE incurs minimal overhead compared with native
computation, and offers verifiable computation with confiden-
tial state via remote attestation. Thus it appears appealing to
build hybrid protocols that take advantage of both.

Harmonizing TEEs with blockchains, though, is a challenge.
Subtle pitfalls arise when the two are naı̈vely glued together.

One such pitfall arises from a fundamental limitation of
TEEs: A malicious host can arbitrarily manipulate their
scheduling and I/O. Consequently, TEEs might terminate
at any point, posing the risk and challenge of lost and/or
conflicting state. This problem is exacerbated by the fact that
the so-called trusted timer in TEEs (SGX, in particular) can in
fact only provide a “no-earlier-than” notion of time, because
a malicious host can also delay the clock read (a message
transmitted over the bus). Thus, while it’s tempting to use a
blockchain to checkpoint a TEE’s state (e.g. [33]), the lack
of a reliable timer renders it tricky for a TEE to ascertain
an up-to-date view of the blockchain. As we’ll show later,
naı̈ve state-checkpointing protocols open up rewinding attacks
(Section III). Another interesting and dangerous consequence
is that seemingly unrelated attack vectors come into play. For
example, the confidentiality of TEE-protected content could
be jeopardized by integrity attacks against the blockchain:
e.g., an attacker could circumvent a privacy budget enforced
by a TEE by providing a forged blockchain to rewind its
execution and sent it arbitrarily many queries. Other challenges
include tolerating compromised TEEs, supporting robust and

consistent failover when TEEs crash, and key management for
enclaves. We systematically identify and treat each of these
pitfalls in this paper.

Following the above design principles, we present Ekiden,
a system for highly performant and confidentiality-preserving
smart contracts. To the best of our knowledge, Ekiden is
the first confidentiality-preserving smart contract system ca-
pable of thousands of transactions per second. The key to
this achievement is a secure and principled combination of
blockchains and trusted hardware. Ekiden combines any de-
sired underlying blockchain system (permissioned or permis-
sionless) with TEE-based execution. Anchored in a formal
security model expressed as a cryptographic ideal functional-
ity [14], Ekiden’s principled design supports rigorous analysis
of its security properties.

Ekiden adopts an architecture where computation is sep-
arated from consensus. Ekiden uses compute nodes to per-
form smart contract computation over private data off chain
in TEEs, then attest to their correct execution on chain.
The underlying blockchain is maintained by validator nodes,
which need not use trusted hardware. Ekiden is agnostic
to consensus-layer mechanics, only requiring a blockchain
capable of validating remote attestations from compute nodes.
Ekiden can thus scale consensus and compute nodes indepen-
dently according to performance and security needs.

By operating compute nodes in TEEs, Ekiden imposes
minimal performance overhead relative to an ordinary (e.g.,
cloud) computing environment. In this way, we avoid the
computational burden and latency of on-chain execution. TEE-
based computation in Ekiden provides confidentiality, enabling
efficient use of powerful cryptographic primitives that a TEE
is known to emulate, such as functional encryption [21] and
black-box obfuscation [51], and also provides a trustworthy
source of randomness, a major acknowledged difficulty in
blockchain systems [13].

To address the availability and network security limitations
of TEEs, Ekiden supports on-chain checkpointing and (op-
tional) storage of contract state. Ekiden thereby supports safe
interaction among long-lived smart contracts across different
trust domains. To address potential TEE failures, such as side
channel attacks, we propose mitigations to preserve integrity
and limit data leakage (Section III-A). Assuming blockchain
integrity, users need not trust smart contract creators, min-
ers, node operators or any other entity for liveness, persis-
tence, confidentiality, or correctness. Ekiden thus enables self-
sustaining services that can outlive any single node, user, or
development effort.1

Technical challenges and contributions. Our work on Ekiden
addresses several key technical challenges:
• Formal security modeling: While intuitively clear, the

desired and achievable security properties required for
Ekiden are challenging to define formally. We express the
full range of security requirements of Ekiden in terms

1Our system name Ekiden refers to this property. “Ekiden” is a Japanese
term for a long-distance relay running race.

of an ideal functionality FEkiden. We outline a security
proof in the Universal Composability (UC) framework
that shows that the Ekiden protocol matches FEkiden under
concurrent composition.

• A principled approach for hybridized TEE-blockchain
systems: We systematically enumerate the fundamental
pitfalls arising from fusing blockchains and TEEs and
offer general techniques for overcoming them. Further,
we show that by appealing to cryptographic ideal func-
tionalities, these techniques can be applied in a principled,
provably secure, and performant way that we believe
can be generalized to a broad range of hybridized TEE-
blockchain systems.

• Performance: The blockchain is likely to be a perfor-
mance bottleneck of a TEE-blockchain hybrid system. We
provide optimization that minimize the use of blockchain
without degrading security: We show that they realize the
same FEkiden functionality as the unoptimized protocol.

II. BACKGROUND

a) Smart Contracts and Blockchains: Blockchain-based
smart contracts are programs executed by a network of partic-
ipants who reach agreement on the programs’ state. Existing
smart contract systems replicate data and computation on all
nodes in the system so that individual node can verify correct
execution of the contract. Full replication on all nodes provides
a high level of fault tolerance and availability. Smart contract
systems such as Ethereum [20] has demonstrated their utility
across a range of applications.

However, several critical limitations impede wider adoption
of current smart contract systems. First, on-chain computation
of fully replicated smart contracts is inherently expensive. For
example in August 2017, it cost $26.55 to add 2 numbers
together one million times in an Ethereum smart contract [20],
a cost roughly 8 orders of magnitude higher than in AWS
EC2 [59]. Furthermore, current systems offer no privacy
guarantees. Users are identified by pseudonyms. As numerous
studies have shown [57], [46], [49], [58], pseudonymity pro-
vides only weak privacy protection. Moreover, contract state
and user input must be public in order for miners to verify
correct computation. Lack of privacy fundamentally restricts
the scope of applications of smart contracts.

b) Trusted Hardware with Attestation: A key building
block of Ekiden is a trusted execution environment (TEE)
that protects the confidentiality and integrity of computations,
and can issue proofs, known as attestations, of computation
correctness. Ekiden is implemented with Intel SGX [4], [27],
[45], a specific TEE technology, but we emphasize that it
may use any comparable TEE with attestation capabilities,
such as the ongoing effort Keystone-enclave [3] aiming to
realize open-source secure TEE hardware. We now offer brief
background on TEEs, with a focus on Intel SGX.

Intel SGX provides a CPU-based implementation of
TEEs—known as enclaves in SGX—for general-purpose com-
putation. A host can instantiate multiple TEEs, which are
not only isolated from each other, but also from the host.

Code running inside a TEE has a protected address space.
When data from a TEE moves off the processor to memory,
it is transparently encrypted with keys only available to the
processor hardware and microcode. Thus the operating
system, hypervisor, and other users cannot access the enclave’s
memory. The SGX memory encryption engine also guarantees
data integrity and prevents memory replay attacks [25]. Intel
SGX supports attested execution, i.e., it is able to prove the
correct execution of a program, by issuing a remote attestation,
a digital signature, using a private key known only to the
hardware, over the program and an execution output. Remote
attestation also allows remote users to establish encrypted and
authenticated channels to an enclave [4]. Assuming trust in
the hardware, and Intel, which authenticates attestation keys,
it is infeasible for any entity other than an SGX platform
to generate any attestation, i.e., attestations are existentially
unforgeable.

However, attested execution realized by trusted hardware
isn’t perfect. For example, SGX alone cannot guarantee
availability: a malicious host can terminate enclaves or drop
messages arbitrarily. Even an honest host could accidentally
lose state (e.g. when power cycles). The weak availability of
SGX poses a fundamental challenge to the design of Ekiden.
Also, the current SGX implementation is vulnerable to side-
channel attacks [68], [53]. Ekiden is compatible with existing
defenses [10], [51], [40], [66], [56]. We discuss side-channel
resistance in Section III-A.

III. TECHNICAL CHALLENGES IN TEE-BLOCKCHAIN
HYBRID SYSTEMS

Before diving into the specifics of Ekiden, we first describe
and address the fundamental pitfalls that arise when harmo-
nizing TEEs and blockchains. The solutions serve as building
blocks of the Ekiden protocol, and we believe the insights
learned from Ekiden will prove to be of broad importance in
hybridized TEE-blockchain systems.

A. Tolerating TEE failures
Although designed to execute general purpose programs,

trusted hardware is not a panacea. Here we analyze the lim-
itations of TEEs and their impact on TEE-blockchain hybrid
protocols.

a) Availability failures: Trusted hardware in general can-
not ensure availability. In the case of SGX, a malicious host
can terminate enclaves, and even an honest host could lose
enclaves in a power cycle. A TEE-blockchain system must
tolerate such host failures, ensuring that crashed TEEs can at
most delay execution.

Our high-level approach is to treat TEEs as expendable
and interchangeable, relying on the blockchain to resolve
any conflicts resulting from concurrency. To ensure that any
particular TEE is easily replaced, TEEs are stateless, and
any persistent state is stored by the blockchain. We discuss
later how TEEs can also keep soft state across invocations
as a performance optimization, but we emphasize that the
techniques in Ekiden ensure that losing such state at any point
does not affect security.

b) Side channels: Although TEEs aim to protect confi-
dentiality, recent work has uncovered data leakage via side-
channel attacks. Existing defenses are generally application-
and attack-specific (e.g., crypto libraries avoid certain data-
dependent operations [10]); generalizing such protections re-
mains challenging. Thus, Ekiden largely defers protections to
the application developer.

Even though there is perhaps no definitive and practical
panacea to all side-channel attacks, it is still desirable to limit
the impact of compromised TEEs and provide graceful degra-
dation in the face of small-scale compromise. Our approach is
to compartmentalize both spatially and temporally. We design
critical components in Ekiden, such as the key manager,
against a strong adversarial model, allowing an attacker to
break the confidentiality of a small fraction of TEEs, and limit
the access to the key manager from other components. We also
employ proactive key rotation [26] to confine the purview of a
leaked key. Key management is fundamental to the availability
of a TEE-blockchain system, as discussed below.

c) Timer failures: TEEs in general lack trusted time
sources. In the case of SGX, although a trusted relative timer is
available, the communication between enclaves and the timer
(provided by an off-CPU component) can be delayed by the
OS [31], [30]. Moreover server-grade Intel CPUs offer no
support for SGX timers at the time of writing. Thus a TEE-
blockchain hybrid protocol must minimize reliance on the TEE
timer.

Our approach is to design protocols that do not require TEEs
to have a current view of a blockchain. Specifically, instead
of requiring a TEE to distinguish stale state from current
state (without a synchronized clock, there is no definitive
countermeasure to a network adversary delaying messages
from the blockchain), our techniques rely on the blockchain
to proactively reject any update based on a stale input state (a
hash of which is included in the update).

The missing timer also makes it hard for TEEs to verify
that an item has been persisted in the blockchain, i.e. to
establish “proofs of publication,” as coined by [33]. However
[33] doesn’t consider threats caused by lack of trustworthy
time in TEEs—e.g., injection of old, fake, easily minable
blocks—that are critical in PoW-based blockchains. One of
our contributions is a general, time-based proof-of-publication
protocol that is secure against network adversary delaying
clock read, as we now briefly explain.

B. Proof of Publication for PoW blockchains

In order to leverage blockchains as persistent storage, a TEE
must be able to efficiently verify that an item has been stored
in the blockchain. For permissioned blockchains, such a proof
can consist of signatures from a quorum of validator nodes.
To establish proofs of publication for PoW-based blockchains,
TEEs must be able to validate new blocks. As noted in [17], a
trusted timer is needed to defend against an adversary isolating
an enclave and presenting an invalid subchain. Unfortunately,
timing sources over secure channels (e.g. SGX timers) cannot
guarantee a bounded response time, as discussed above. To

work around this limitation, we leverage the confidentiality of
TEEs so that an attacker delaying a timer’s responses cannot
prevent an enclave from successfully verifying blockchain
contents. Our solution can even work without SGX timers
given trust in, e.g. TLS-enabled NTP servers. Due to lack of
space, we relegate our proof-of-publication protocol for PoW
blockchains to Section V-A.

C. Key management in TEEs
A fundamental limitation of using a blockchain to persist

TEE state is the lack of confidentiality. We showed previously
how to avoid this problem by encryption. This, however, leads
to another problem: how can one persist the encryption keys?

Generally the method is to replicate keys across multiple
TEEs. However, the flip side is the challenge of minimizing the
key exfiltration risk in the face of confidentiality breach (e.g.
via side-channel attacks). There is in general a fundamental
tension between exposure risk and availability: A higher
replication factor means not only better resiliency to state loss,
but also a larger attack surface. Therefore the tradeoff and
achievable properties would depend on the threat model.

Since there is perhaps no definitive and practical full-
system side-channel mitigation, our approach is to design the
key manager against a stronger adversarial model where the
attacker is allowed to break the confidentiality of a small
fraction of TEEs, and limit the access from other components.
We outline the key management protocol in Section V-B.

D. Atomic delivery of execution results
In blockchain systems, ensuring the atomicity of executions,

namely either both executions e1, e2 finish or none of them,
has been a fundamental problem, as exemplified by work on
atomic cross-chain swaps [7]. A similar but more complicated
problem arises in TEE-blockchain hybridization.

For a general stateful TEE-blockchain protocol, TEE ex-
ecution yields two messages: m1, which delivers the output
to the caller, and m2, which delivers the state update to the
blockchain, both via adversarial channels. We emphasize that
it is critical to enforce atomic delivery of the two messages,
i.e. both m1 and m2 are delivered or the system has become
permanently unavailable. m1 is delivered when the caller
receives it. The new state m2 is delivered once accepted by the
blockchain. Rejected state update are not considered delivered.

To see the necessity of atomic delivery, consider possible
attacks when it’s violated, i.e., when only one of the two
messages is delivered. First, if only the output m1 is delivered,
a rewind attack becomes possible. Since TEE cannot tell
whether an input state is fresh, an attacker can provide stale
states to resume a TEE’s execution from an old state. This
enables grinding attacks against randomized TEE programs.
An attacker may repeatedly rewind until receiving the desired
output. Another example is that rewinding could defeat budget-
based privacy protection, such as differential privacy. On the
other hand, if only the state update m2 is delivered, the user
risks permanent loss of the output, as it might be impossible
to reproduce the same output with the updated state.

We specify the atomic delivery protocol in Section V-C.

Contract TEE

Validator
Nodes Append-only ledger

(1) inp

(2) Get

Clients

(4) exec

(5’a) Store

(5’b) outp

Compute
Nodes

(Enck(statenew),�TEE)
<latexit sha1_base64="juaLG4TGlXt9PzyL3I7m/yuJhp8=">AAACMnicbVBNSxtRFL2jrdq0tbFddjMoQoQSJlJQdwEJuFQwKmTCcOflTnzkzZvhvTtqMswf8X9077b9B8WVdNOFP8KXj4XVHnhwOOd+vHviXEnLQfDbW1p+83Zlde1d7f2Hj+uf6hufz2xWGEFdkanMXMRoSUlNXZas6CI3hGms6DweHU798ysyVmb6lMc59VMcaplIgeykqP69EabIlzYpO1pEo4ZlZIpCphsuNV1XO9W30MphigvttNOpdqL6VtAMZvBfk9aCbLUbk4c2ABxH9b/hIBNFSpqFQmt7rSDnfomGpVBU1cLCUo5ihEPqOaoxJdsvZ9dV/rZTBn6SGfc0+zP1eUeJqbXjNHaVs1NeelPxf16v4GS/X0qdF0xazBclhfI586dR+QNpSLAaO4LCSPdXX1yiQcEu0Nr28zXT4TlOsspF03oZxGvS3W0eNIMTF9ERzLEGX2ETGtCCPWjDERxDFwTcwh38hF/eD+/ee/D+zEuXvEXPF/gH3uMTNEOuMA==</latexit><latexit sha1_base64="KLKZS9rOJszbhYUtSf8G9pcNJB8=">AAACMnicbVDLattAFB3lHTdJ3TS7bESNwYZg5FJouwsUUy9diGODZcTV+MoePBqJmau0jtCP5COyyz7b5A9KV6GbLvoRGT8WadIDA4dz7mPuCVMpDHneT2dtfWNza3tnt/Rqb//gdfnN4blJMs2xyxOZ6H4IBqVQ2CVBEvupRohDib1w+mXu9y5QG5GoM5qlOIxhrEQkOJCVgvKHmh8DTUyUtxQPpjVDQBj4hD8oV/i9qBcnvhHjGFbaWatV1INyxWt4C7gvSXNFKqe1y4ev10d5Jyj/8UcJz2JUxCUYM2h6KQ1z0CS4xKLkZwZT4FMY48BSBTGaYb64rnCrVhm5UaLtU+Qu1KcdOcTGzOLQVi5Oee7Nxf95g4yiT8NcqDQjVHy5KMqkS4k7j8odCY2c5MwS4FrYv7p8Aho42UBL1adr5sNTuEwKG03zeRAvSfd943PD+2YjarMldtgxe8dqrMk+slPWZh3WZZxdsVt2x+6dG+eX8+D8XpauOauet+wfOH8fAQAOr3Q=</latexit><latexit sha1_base64="KLKZS9rOJszbhYUtSf8G9pcNJB8=">AAACMnicbVDLattAFB3lHTdJ3TS7bESNwYZg5FJouwsUUy9diGODZcTV+MoePBqJmau0jtCP5COyyz7b5A9KV6GbLvoRGT8WadIDA4dz7mPuCVMpDHneT2dtfWNza3tnt/Rqb//gdfnN4blJMs2xyxOZ6H4IBqVQ2CVBEvupRohDib1w+mXu9y5QG5GoM5qlOIxhrEQkOJCVgvKHmh8DTUyUtxQPpjVDQBj4hD8oV/i9qBcnvhHjGFbaWatV1INyxWt4C7gvSXNFKqe1y4ev10d5Jyj/8UcJz2JUxCUYM2h6KQ1z0CS4xKLkZwZT4FMY48BSBTGaYb64rnCrVhm5UaLtU+Qu1KcdOcTGzOLQVi5Oee7Nxf95g4yiT8NcqDQjVHy5KMqkS4k7j8odCY2c5MwS4FrYv7p8Aho42UBL1adr5sNTuEwKG03zeRAvSfd943PD+2YjarMldtgxe8dqrMk+slPWZh3WZZxdsVt2x+6dG+eX8+D8XpauOauet+wfOH8fAQAOr3Q=</latexit>

Enck(stateprev)
<latexit sha1_base64="+0AUWAL90kUSKsk5TDK8eRSpa0I=">AAACH3icbVDLSsNAFL3xbX1VXbqJSqEilNSNuiuI6FLBqtCWMJnetEMnkzBzU6yha//DvVv9BVfi1j9w7Rc4aV34OjBwOOe+5gSJFIY8782ZmJyanpmdmy8sLC4trxRX1y5NnGqOdR7LWF8HzKAUCuskSOJ1opFFgcSroHeU+1d91EbE6oIGCbYi1lEiFJyRlfziZjNi1DVhdqy43ysbYoR+k/CGMjunP9wZ+sVtr+KN4P4l1S+yXdv9OKkBwJlffG+2Y55GqIhLZkyj6iXUypgmwSUOC83UYMJ4j3WwYaliEZpWNvrK0C1Zpe2GsbZPkTtSv3dkLDJmEAW2cnT4by8X//MaKYUHrUyoJCVUfLwoTKVLsZvn4raFRk5yYAnjWthbXd5lmnGy6RVK39fkwxN2G+fRVH8H8ZfU9yqHFe/cRnQKY8zBBmxBGaqwDzU4hTOoA4c7eIBHeHLunWfnxXkdl044Xz3r8APO2ycyOaaG</latexit><latexit sha1_base64="SmFDLoEd0RmiG7NjKjvH+8Qja5s=">AAACH3icbVDLSsNAFJ3UV62vqks3USkoQkkFUXcFKXapYK3QljCZ3rRDJ5MwcyPW0LX/4d6t/oIrcesfuBP8AidtF9p6YOBwzn3N8SLBNTrOh5WZmZ2bX8gu5paWV1bX8usb1zqMFYMaC0WobjyqQXAJNeQo4CZSQANPQN3rnaV+/RaU5qG8wn4ErYB2JPc5o2gkN7/dDCh2tZ9UJHN7exopgttEuMPEzLkd7A/c/K5TdIawp0lpTHbLB9/nlZOvows3/9lshywOQCITVOtGyYmwlVCFnAkY5JqxhoiyHu1Aw1BJA9CtZPiVgV0wStv2Q2WeRHuo/u5IaKB1P/BM5fDwSS8V//MaMfonrYTLKEaQbLTIj4WNoZ3mYre5AoaibwhliptbbdalijI06eUKv9ekwyN6H6bRlCaDmCa1w+Jp0bk0EVXJCFmyRXbIHimRY1ImVXJBaoSRB/JEnsmL9Wi9Wm/W+6g0Y417NskfWB8/Ju+n5w==</latexit><latexit sha1_base64="SmFDLoEd0RmiG7NjKjvH+8Qja5s=">AAACH3icbVDLSsNAFJ3UV62vqks3USkoQkkFUXcFKXapYK3QljCZ3rRDJ5MwcyPW0LX/4d6t/oIrcesfuBP8AidtF9p6YOBwzn3N8SLBNTrOh5WZmZ2bX8gu5paWV1bX8usb1zqMFYMaC0WobjyqQXAJNeQo4CZSQANPQN3rnaV+/RaU5qG8wn4ErYB2JPc5o2gkN7/dDCh2tZ9UJHN7exopgttEuMPEzLkd7A/c/K5TdIawp0lpTHbLB9/nlZOvows3/9lshywOQCITVOtGyYmwlVCFnAkY5JqxhoiyHu1Aw1BJA9CtZPiVgV0wStv2Q2WeRHuo/u5IaKB1P/BM5fDwSS8V//MaMfonrYTLKEaQbLTIj4WNoZ3mYre5AoaibwhliptbbdalijI06eUKv9ekwyN6H6bRlCaDmCa1w+Jp0bk0EVXJCFmyRXbIHimRY1ImVXJBaoSRB/JEnsmL9Wi9Wm/W+6g0Y417NskfWB8/Ju+n5w==</latexit>

(3) Get k
<latexit sha1_base64="2XkW6LkDmee5tVMXCd0WPlqRmQY=">AAACBnicbVC7TsMwFL3hWcqrwMhiUVViqhIWYKISS8eCCK1oo8pxndaq40S2g1SifgA7K/wCE4KRL2DnD/gMnLRDaTmSpaNz7uP4+jFnStv2t7W0vLK6tl7YKG5ube/slvb2b1WUSEJdEvFItnysKGeCupppTluxpDj0OW36w8vMb95TqVgkbvQopl6I+4IFjGBtpLtOiPVABelw3C2V7aqdAy0SZ0rKF18f12DQ6JZ+Or2IJCEVmnCsVNuxY+2lWGpGOB0XO4miMSZD3KdtQwUOqfLSPPEYVYzSQ0EkzRMa5epsR4pDpUahbyrzhPNeJv7ntRMdnHkpE3GiqSCTRUHCkY5Q9n3UY5ISzUeGYCKZyYrIAEtMtDlSsTK7Jhse44coO40zf4hF4p5Uz6v2lV2u1WGCAhzCERyDA6dQgzo0wAUCAp7gGV6sR+vVerPeJ6VL1rTnAP7A+vwFWiOchg==</latexit><latexit sha1_base64="N/i1wvfVzYTA02VzvnCuXJ3vKkE=">AAACBnicbVDLSgMxFM34rPVVdSlIsBRclRk36sqCmy5bcGyxHUomzbShmWRIMkIdunTh3q3+giuxS7/AvX8g+BNmpl3U1gOBwzn3cXL9iFGlbfvLWlpeWV1bz23kN7e2d3YLe/s3SsQSExcLJmTTR4owyomrqWakGUmCQp+Rhj+4Sv3GHZGKCn6thxHxQtTjNKAYaSPdtkOk+ypIBqNOoWiX7QxwkThTUrz8HNd/Ho7GtU7hu90VOA4J15ghpVqOHWkvQVJTzMgo344ViRAeoB5pGcpRSJSXZIlHsGSULgyENI9rmKmzHQkKlRqGvqnMEs57qfif14p1cO4llEexJhxPFgUxg1rA9PuwSyXBmg0NQVhSkxXiPpIIa3OkfGl2TTo8QvciPY0zf4hF4p6WL8p23S5WqmCCHDgEx+AEOOAMVEAV1IALMODgCTyDF+vRerXerPdJ6ZI17TkAf2B9/AKTx57L</latexit><latexit sha1_base64="N/i1wvfVzYTA02VzvnCuXJ3vKkE=">AAACBnicbVDLSgMxFM34rPVVdSlIsBRclRk36sqCmy5bcGyxHUomzbShmWRIMkIdunTh3q3+giuxS7/AvX8g+BNmpl3U1gOBwzn3cXL9iFGlbfvLWlpeWV1bz23kN7e2d3YLe/s3SsQSExcLJmTTR4owyomrqWakGUmCQp+Rhj+4Sv3GHZGKCn6thxHxQtTjNKAYaSPdtkOk+ypIBqNOoWiX7QxwkThTUrz8HNd/Ho7GtU7hu90VOA4J15ghpVqOHWkvQVJTzMgo344ViRAeoB5pGcpRSJSXZIlHsGSULgyENI9rmKmzHQkKlRqGvqnMEs57qfif14p1cO4llEexJhxPFgUxg1rA9PuwSyXBmg0NQVhSkxXiPpIIa3OkfGl2TTo8QvciPY0zf4hF4p6WL8p23S5WqmCCHDgEx+AEOOAMVEAV1IALMODgCTyDF+vRerXerPdJ6ZI17TkAf2B9/AKTx57L</latexit>

Compute Node i

Key management
committee

Fig. 1. Simplified overview of Ekiden architecture and workflow. Clients
send inputs to confidentiality-preserving smart contracts, which are executed
within a TEE at any compute node. The blockchain stores encrypted contract
state. See Section IV-B for an overview.

IV. OVERVIEW OF EKIDEN

In this section, we provide an overview of the design and
security properties of Ekiden.

A. Motivation

As an example to motivate our work, consider a credit
scoring application—an example we implement and report
on in Section VII-A. Credit scores are widely used by
lenders, insurers, and others to evaluate the creditworthi-
ness of consumers. Despite its considerable revenue ($10.8B
in 2017 [29]), the credit reporting industry in the U.S. is
concentrated among a handful of credit bureaus [29]. Such
centralization creates large single points of failure and other
problems, as highlighted by a recent data breach affecting
nearly half the US population [9].

Blockchain-based decentralized credit scoring is thus an
attractive and popular alternative. Bloom [38], for example,
is a startup offering a credit scoring system on Ethereum.
Their scheme, however, only supports a static credit scoring
algorithm that omits important private data and cannot support
predictive modeling. Such applications are bedeviled by two
critical limitations of current smart contract systems: (1) A
lack of data confidentiality needed to protect sensitive con-
sumer records (e.g., loan-service history for credit scoring)
and the proprietary prediction models derived from them and
(2) A failure to achieve the high performance needed to handle
global workloads.

To support large-scale, privacy-sensitive applications like
credit scoring, it is essential to meet these two requirements
while preserving the integrity and availability offered by
blockchains—all without requiring a trusted third party. Eki-
den offers a confidential, trustworthy, and performant platform
that achieves precisely this goal for smart contract execution.

B. Ekiden Overview

Conceptually, Ekiden realizes a secure execution environ-
ment for rich user-defined smart contracts. An Ekiden contract
is a deterministic stateful program. Without loss of generality,
we assume contract programs take the form (outp, stnew) :=
Contract(stold, inp), ingesting as input a previous state stold
and a client’s input inp, and generating an output outp and
new state stnew. In this section, we describe Ekiden in this
simplified form, and we will present the system in detail in
an upcoming paper.

Once deployed on Ekiden, smart contracts are endowed with
strong confidentiality, integrity and availability guarantees.
Ekiden achieves these properties with a hybrid architecture
combining trusted hardware and the blockchain. Figure 1
depicts the architecture of a simplified version of Ekiden and
a workflow of Ekiden smart contracts. As it shows, there are
three types of entities in Ekiden: clients, compute nodes and
validator nodes.
• Clients are end users of smart contracts. In Ekiden, a

client can create contracts or execute existing ones with
secret input. In either case, clients delegate computation to
compute nodes (discussed below). We expect clients to be
lightweight, allowing both mobile and web applications to
interact with contracts.

• Compute nodes process requests from clients by running
the contract in a contract TEE and generating attestations
proving the correctness of state updates. Anyone with a
TEE-enabled platform can participate as a compute node,
contributing to the liveness and scalability of the system.

• Key manager nodes run a distributed protocol in key man-
agement TEEs to manage keys used by contract TEEs. A
contract TEE reaches out to the key management committee
to create or retrieve keys. We describe key management in
Section V-B.

• Validator nodes maintain a distributed append-only ledger,
i.e. a blockchain, by running a consensus protocol. Con-
tract state and attestations are persisted on this blockchain.
Validator nodes are responsible for checking the validity of
state updates using TEE attestations, as we discuss below.

C. Workflow

We now sketch the contract creation and request execution
workflow, providing further details on Figure 1. The detailed
formal protocol is presented in Section VI-B.

For simplicity, we assume a client has a priority list of com-
pute nodes to use. In practice, a coordinator can be employed
to facilitate compute node discovery and load balancing. We
denote a client as P and a compute node as Comp.

a) Contract creation: When creating a contract, P sends
a piece of contract code Contract to Comp. Comp loads
Contract into a TEE (called contract TEE hereafter), and
starts the initialization. The contract TEE creates a fresh
contract id cid, obtains fresh (pkin

cid, sk
in
cid) pair and kstate

cid from
the key management committee and generates an encrypted
initial state Enc(kstate

cid , 0⃗) and an attestation σTEE, proving

the correctness of initialization and that pkin
cid is the cor-

responding public key for contract cid. Finally, Comp ob-
tains a proof of the correctness of σTEE by contacting the
attestation service (detailed below); this proof and σTEE are
bundled into a “certified” attestation π. Comp then sends
(Contract, pkin

cid,Enc(k
state
cid , 0⃗), π) to validator nodes. The full

protocol for contract creation is specified in the “create” call of
ProtEkiden (Fig. 2). Validator nodes verify π before accepting
Contract, the encrypted initial state, and pkin

cid as valid and
placing it on the blockchain.

b) Request execution: The steps of request execution
illustrated in Fig. 1 are as follows:
(1) To initiate the process of executing a contract cid with

input inp, P first obtains pkin
cid associated with the contract

cid from the blockchain, computes inpct = Enc(pkin
cid, inp)

and sends to Comp a message (cid, inpct), as specified in
Lines 8-11 of ProtEkiden.

(2) Comp retrieves the contract code and the encrypted pre-
vious state stct = Enc(kstate

cid , stold) of contract cid, from the
blockchain, and loads stct and inpct into a TEE and starts
the execution, as specified in Line 30-33 of ProtEkiden.

(3-4) From the key management committee, the contract TEE
obtains kstate

cid and skin
cid, with which it decrypts stct and inpct

and executes, generating an output outp, a new encrypted
state st′ct = Enc(kstate

cid , stnew), and an signature π proving
correct computation, as specified in Line 7-13 of the TEE
Wrapper (Fig. 6).

(5a, 5b) Finally, Comp and P conduct an atomic delivery
protocol which delivers outp to P and (st′ct, π) to the
validator nodes. We defer the detail of atomic delivery to
Section V-C. Briefly, Step 5a and Step 5b in Fig. 1 are
executed atomically, i.e. outp is revealed to P if and only
if (st′ct, π) is accepted by validator nodes. Validator nodes
verify π before accepting the new state as valid and placing
it on the blockchain.

A key distinction between Ekiden and existing smart con-
tract platforms (e.g. Ethereum [20]) is Ekiden decouples
request execution from consensus. In Ethereum, request ex-
ecution is replicated by all nodes in the network to reach
consensus, rendering the entire network as slow as a single
node. Whereas in Ekiden, request is only executed by K
compute nodes for some small K (e.g. in Figure 1, we set
K = 1) and validator nodes just verify K proofs of correct
execution without repeating the execution.

In our implementation, a proof of correct execution takes
the form of a signature π. Specifically, a compute node Comp
obtains π as follows. Suppose the execution on Comp results
in an output st′ct and an attestation σTEE (a signature [12] over
the contract code and st′ct). Comp then sends σTEE to the Intel
Attestation Service (IAS), which verifies σTEE and replies with
π = (b, σTEE, σIAS), where b ∈ {0, 1} indicates the validity of
σTEE and σIAS is a signature over b and σTEE by IAS. π is then
submitted to the validator nodes as a proof of correctness for
st′ct. As π is just a signature, validator nodes need neither
trusted hardware nor to contact the IAS to verify it.

D. Ekiden Security Goals
Here we summarize the security goals of Ekiden. Briefly,

Ekiden aims to support execution of general-purpose contracts
while enforcing the following security properties:
Correct execution: Contract state transitions reflect correct

execution of contract code on given state and inputs.
Consistency: At any time, the blockchain stores a single

sequence of state transitions consistent with the view of
each compute node.

Secrecy: During a period without any TEE breach, Ekiden
guarantees that contract state and inputs from honest
clients are kept secret from all other parties. Additionally,
Ekiden is resilient to some key-manager TEEs being
breached.

Graceful confidentiality degradation: Should a confiden-
tiality breach occur in a computation node (as opposed to a
key-manager node), Ekiden provides forward secrecy and
reasonable isolation from the affected TEEs. Specifically,
suppose a confidentiality breach happens at t. The attacker
can at most access the history up to t −∆ where ∆ is a
system parameter. Moreover, a compromised TEE can only
affect a subset of contracts.

Non-goals: Ekiden does not prevent contract-level leakage
(e.g. through covert channels, bugs or side channels). Thus
contract developers are responsible for ensuring that no secret
is revealed through public output, and that the contract is free
of bugs and side channels. We discuss supported mitigation in
Section VI-D.

E. Assumptions and Threat Model
a) TEE: Recent work demonstrates that the confidential-

ity of SGX enclaves may be compromised via side-channel
attacks. In light of this threat, we assume the adversary can
compromise the confidentiality of a small fraction of TEEs.
As noted above, the impact depends on whether the breaches
affect key-manager or computation nodes. We assume that
TEE hardware is otherwise correctly implemented and se-
curely manufactured.

b) Blockchain: Ekiden is designed to be agnostic to
the underlying consensus protocol. It can be deployed atop
any blockchain implementation as long as the requirements
specified below are met.

We assume the blockchain will perform prescribed compu-
tation correctly and is always available. In particular, Ekiden
relies on validator nodes to verify attestations. We further
assume the blockchain provides an efficient way to construct
proofs of item inclusion on the blockchain, i.e., proofs of
publication, as discussed in Section III-B.

c) Threat Model: All parties in the system must trust
Ekiden and TEE. We assume the adversary can control the
operating system and the network stack of all but one com-
pute nodes. On controlled nodes, the adversary can reorder
messages and schedule processes arbitrarily. We assume the
attacker can compromise the confidentiality of a small fraction
(e.g. f%) of TEEs. The adversary observes global network
traffic and may reorder and delay messages arbitrarily.

The adversary may corrupt any number of clients. Clients
need not execute contracts themselves and do not require
trusted hardware. We assume honest clients trust their own
code and platform, but not other clients. Each contract has an
explicit policy dictating how data is processed and requests
are serviced. Ekiden does not (and cannot reasonably) prevent
contracts from leaking secrets intentionally or unintentionally
through software bugs.

V. BUILDING BLOCKS

Before diving to protocol details, we first present key
building blocks of the Ekiden protocol, addressing the general
technical challenges in TEE-blockchain systems, as reviewed
in Section III.

A. Proof of Publication

We now present a proof of publication protocol for per-
missionless blockchains. Please refer to Section III-B for
background and motivation. A proof of publication is an
interactive proof between a verifier E , in the form of a contract
TEE, and a untrusted prover P . The high level idea is to only
give P a limited amount of time to publish the message in
a block within a subchain of sufficient difficulty so that an
adversary cannot feasibly forge it. The protocol is formally
specified in Fig. 7. We give text description below so the
formal specification is not required for understanding.
E stores a recent checkpoint block CB from the blockchain,

from which a difficulty δ(CB), e.g. the number of leading
zeroes in the block nonce, can be calculated. E will emit an
(attested) version of CB to any requesting client, enabling the
client to verify CB’s freshness. Given a valid recent CB, E
can verify new blocks based on δ(CB), assuming the difficulty
is relatively stationary. (For simplicity in our analysis here, we
assume constant difficulty, but our analysis can be extended
under an assumption of bounded difficulty variations.)

To initiate publication of m, E calls the timer to get a
timestamp t1. As discussed, E may receive t1 after a delay.
After receiving t1 (maybe at a time later than t1), E generates
a random nonce r and requires the prover to publish (m, r).
Upon receiving a proof π(m,r) (a subchain containing (m, r))
from P , E calls the timer again for t2. Let nc to be the number
of confirmations in (m, r), τ be the expected block interval
(an invariant of the blockchain), and ϵ be a multiplicative
slack factor that accounts for variation in the time to generate
blocks, which is a stochastic process. E.g., ϵ = 1.5 means that
production of π(m,r) is allowed to be up to 1.5 times slower
than expected on the main chain. E accepts π(m,r) only if
t2 − t1 < nc × τ × ϵ.

Setting ϵ to a high value reduces the probability of false
rejections (i.e., rejecting proofs from an honest P when the
main chain growth was unluckily slow during some time-
frame). However, a high ϵ also increases the possibility of false
acceptance, i.e. accepting a forged subchain. For any ϵ > 1, it
is possible to require a large enough nc so that the probability
of a successful attack becomes negligible. However, a large nc

means that an honest P needs to wait for a long time before
P can obtain the output, may affecting the user experience.

For example, for a powerful attacker with 25% hash power
(roughly the largest mining pool known to exist in Bitcoin
and Ethereum at the time of writing), setting nc = 80 and
ϵ = 1.6 means the attacker needs an expected 2112 hashes to
forge a proof of publication,2 while an honest proof will be
rejected with probability 2−19. Similar block-synchronization
techniques and analysis are used in the recently proposed
Tesseract TEE-based cryptocurrency exchange [7].

It is easy to see that delaying the timer’s responses does not
give the attacker more time than t2 − t1. Delaying timestamp
t1 shrinks this apparent interval of time, disadvantaging the
attacker. E’s checkpoint block can be updated with the same
protocol, by publishing an empty message. Note that once a
message is successfully published by a TEE, other TEEs can
obtain the proof via secure channels established by attestations,
saving the cost of repeating the protocol.

B. Key Management

Each Ekiden contract is associated with a set of keys,
including a symmetric key for state encryption and a key
pair to encrypt client input. Here we discuss the generation,
distribution, and rotation of these keys. We discuss two key
manager implementations: (i) a simpler protocol with key
generation done in a TEE and replicated for availability and (ii)
a more complex protocol that uses a distributed key generation
protocol among a committee and additionally derives rotating
short-term keys. In Ekiden multiple key managers can be avail-
able, with contract deployers choosing which key manager to
be the authority of each contract’s keys.

1) Replicated TEEs: In this protocol, a key manager node
uses a TEE program to generate a master secret, and it repli-
cates it across other nodes in the key management committee.

a) Adversarial model: We consider an adversary that can
compromise the key manager nodes, but that cannot break the
confidentiality of the TEEs.

In addition, we assume there is at least one node online
and not compromised at any time so that the availability of
keys are retained. In practice, participation can be motivated
by economic rewards and penalties. We leave the incentive
design for future work.

b) Desired properties: Ideally, a key management proto-
col should satisfy the following properties:

• Confidentiality: The adversary (within our model) cannot
exfiltrate contracts’ decryption keys or secrets used to
generate them.

• Availability: An honest contract TEE can always access
decryption keys.

c) Initialization: The first node in the key management
committee generates a random master secret s. A node KMa

joining the committee obtains a copy of the master secret
by requesting it from a node already in the committee with

2as the time of writing, it takes roughly 273 hashes to mine a Bitcoin block.

TEE KMb. KMa and KMb mutually attest that the other is
running the key management TEE. These remote attestations
use nonces to ensure freshness rather than timestamps, so that
they do not require a trusted view of time to validate. Then,
KMb sends s to KMa over an encrypted channel.

d) Generating contract keys: To get the contract key for
a contract with ID cid, a compute node Comp first establishes
a secure channel and authenticates itself with a key manager
node’s TEE. Once verified that Comp is indeed executing cid,
the key manager node’s TEE computes kcid = H(cid)s, where
H(·)k is a keyed hash function with key k, and sends kcid to
Comp.

2) Distributed key generation:
a) Adversarial model: We consider an adversary stronger

than the adversary from Section V-B1. In addition to being
able to compromise key manager nodes, the adversary can
also break the confidentiality, e.g., via side-channel attacks, of
some fraction (e.g. f%) of the TEEs. The exact value of f
depends on the deployment and enrollment model. f can be a
very low value if enrollment is limited to well-managed nodes,
e.g., ones hosted by capable and reputable organizations. But
when deployed in a more open environment, f needs to be
reasonably high. We assume the participating hosts have (at
least partially) Sybil-resistant identities. One way to achieve
this is to require a security deposit to join the protocol.

However, the adversary is weaker than the adversary from
Section V-B1 in harming availability. We assume there are suf-
ficiently many (e.g. more than 2f% of) participants online at
any time so that the availability of keys are retained. Similarly,
a system of incentives can motivate this participation, and we
leave the design to future work.

b) Desired properties: Since decryption keys are even-
tually revealed to a contract TEE, which itself may also be
compromised, actively used keys (i.e. hot keys) must be short-
lived, derived from a less-exposed long-term master secret.
In addition to the properties desired of the replicated TEEs
protocol, this protocol should satisfy an additional property:

• Forward secrecy: If a short-term key is compromised at time
t, it cannot be used to decrypt messages encrypted before
t−∆, for some system parameter ∆.

c) Preliminaries: Below we outline a key management
protocol that satisfies the above requirements. We first re-
view the building blocks, including distributed key generation
(DKG) protocols and distributed pseudo-random functions
(PRFs).

A distributed key generation (DKG) protocol (e.g. [23])
allows a set of N parties to generate unbiased, random keys.
The outcome of a run of a DKG protocol is a secret s, but
shared among parties using a secret-sharing scheme (typically
Shamir’s).

Informally, pseudo-random functions (PRF) are a collec-
tion of functions F = {fs}s∈S , such that for a random index
s←$ S, fs(·) is indistinguishable from a random function.

Naor et al. [50] introduce distributed PRFs, which are
such that parties with shares of s can evaluate fs(·) without

reconstructing s. Specifically, let G be a Schnorr group. Let
H : {0, 1}∗ → G be a hash function; [50] shows that
fs(x) = H(x)s is a family of PRF.

Suppose s is shared among parties using a (k, n)-secret
sharing scheme. To evaluate fs(x), party i simply computes
and outputs yi = H(x)si , computed with its share si. After
collecting at least k + 1 of {yi}, one can derive fs(x) by
polynomial interpolation in the exponent:

fs(x) = H(x)S = H(x)
∑

i∈A Siλi =
∏
i∈A

yλi
i

where λi are Lagrange coefficients λi =
∏

j ̸=i
−j
i−j .

d) Key management committees and long-term keys:
Assuming Sybil-resistant identities, we can sample N nodes
from the participants to form a key management committee
(KMC). N is a system parameter. When initializing a contract
c, KMC runs the DKG protocol to generate a long term key
kc, so that kc is secret-shared among KMC members using a
(⌈fN⌉, N)-secret sharing scheme. Previous work on proactive
secret sharing (e.g. [26], [60]) can be used to periodically
rotate the committee without changing the secret. [60] also
allows a committee to be dynamically expanded.

e) Generating short-term keys: Suppose short-term keys
expire every epoch. To get the short-term key for contract
c at epoch t, a compute node Comp first establishes secure
channels and authenticates itself with members in KMC. Once
verified that Comp is indeed executing c, each KMC member
i computes kc,t,i = H(t)k

i
c and sends kc,t,i to Comp. After

collecting f + 1 outcomes from A ⊆ KMC, Comp can
construct the short-term key for epoch t by kc,t =

∏
i∈A kλi

c,t,i

where λi are Lagrange coefficients.
f) Breach isolation: We proactively quarantine confi-

dentiality breaches by enforcing a privacy budget for each
compute node. For this to work, we assume contract TEEs
have unforgeable host identities. For example, SGX remote
attestation uses Intel’s Enhanced Privacy ID (EPID) scheme,
which associates a host with such an identity. Key-manager
nodes maintain a counter κComp for each compute node Comp
to record the number of queries. The counter is reset along
with epoch advancement. Key-manager nodes fulfill a query
only if κComp < κ for some system parameter κ. With this in
place, no matter how many TEEs a breached compute node
spawns, it can at most obtain κ keys. In practice, requests to
a depleted honest compute node can be redirected to other
nodes, resulting in only a modest overhead.

g) Committee rotation: The key management committee
may need to change over time. Maram et al.’s concurrent work
proposes algorithms to manage a shared secret in a committee
where members can join and leave over time [42]. An enhance-
ment to this key manager protocol could incorporate such an
algorithm to persist a long term keys kc, while short term keys
generated by the committee at the time of the request.

C. Atomic Delivery

Recall that TEE execution yields two messages: m1, which
delivers the output to the caller, and m2, which delivers the

state update to the blockchain, both via adversarial channels.
As discussed in Section III-D, it is critical to enforce atomic
delivery of the two messages, i.e. both m1 and m2 are
delivered or the system has become permanently unavailable.
Now we specify a protocol for atomic delivery.

Assuming a secure communication channel between a TEE
and the calling client P (which in practice can be constructed
with remote attestation), we realize atomic delivery of m1 and
m2 (defined above) via the following two-phase protocol: To
initiate atomic delivery, TEE obtains a fresh key k from the
key manager and sends an attested mc

1 = Enc(k,m1) to P
over a secure channel. Once P acknowledges receipt of mc

1,
the TEE sends m2 to the blockchain. Finally, after seeing πm2 ,
a proof of publication for m2, TEE sends k to P . Under the
constraint that at least one node in the compute committee
remains online to perform this step, P can thus decrypt m1.

The above protocol realizes atomic delivery. On the one
hand, as a TEE can ascertain the delivery of m2 by verifying
πm2

, k is revealed only if m2 is delivered. On the other hand,
if m2 has been delivered, k will be released eventually because
at least one TEE is available and the key management protocol
ensures that the availability of k.

VI. PROTOCOL DETAILS AND SECURITY PROOF

In this section, we specify ProtEkiden, the protocol realiza-
tion of Ekiden. It aims to realize a Universal Composability
(UC) [14] ideal functionality FEkiden that we defer to Ap-
pendix A for lack of space and encourage the reader to consult.
Looking ahead, ProtEkiden UC-realizes FEkiden.

A. Preliminary and Notation

a) Attested Execution: To formally model attested ex-
ecution on trusted hardware, we adopt the ideal function-
ality Gatt defined in [55]. Informally, a party first loads a
program prog into a TEE with an “install” message. On
a “resume” call, the program is run on the given input,
generating an output outp along with an attestation σTEE =
ΣTEE.Sig(skTEE, (prog, outp)), a signature under a hardware
key skTEE. The public key pkTEE can be obtained from
Gatt.getpk(). See [55] for details.

In practice it’s useful to allow a TEE to output data
that is not included in attestation. We extend Gatt slightly
to allow this: if a TEE program prog generates a pair of
output (outp1, outp2), the attestation only signs outp1, i.e.
σTEE = ΣTEE.Sig(skTEE, (prog, outp1)). A common pattern is
to include a hash of outp2 in outp1, to allow parties to verify
σTEE and outp2 separately. Similar technique is used in [69].

Following the notation in [34], [66], we use contract wrap-
pers (defined in Fig. 6) to abstract away routine functionality
such as state encryption, key management, etc. A contract c
augmented with the wrapper is denoted ĉ.

b) Blockchain: Fblockchain[succ] (given in Appendix A)
defines a general-purpose append-only ledger implemented by
common blockchain protocols (formally defined in Figure 4 in
the Appendix). The parameter succ is a function that specifies
the criteria for a new item to be added to the storage, modeling

the notion of transaction validity. We retain the append-only
property of blockchains but abstract away the inclusion of
state updates in blocks. We assume overlay semantics that
associate blockchain data with id’s. In addition to read and
write interfaces, Fblockchain provides a convenient interface by
which clients can ascertain whether an item is included in the
blockchain. In practice, this interface avoids the overhead of
downloading the entire blockchain.

c) Parameterizing Fblockchain: In Ekiden, the contents of
storage are parsed as an ordered array of state transitions,
defined as transi = (H(sti−1), sti, σi), a tuple of a hash of
the previous state, a new state, and proofs from the compute
nodes’ TEEs attesting to the correctness of a state transition.
(Note that as a performance optimization, large user input—
e.g. training data in an ML contract— may not be stored
on chain.) Storage can be interpreted as a special initial
state followed by a sequence of state transitions: Storage =
((Contract, st0, σ0), {transi}i≥1).

For a state transition to be valid, it must extend the
latest state and the attestation must verify. Formally, this is
achieved by parameterizing Fblockchain with a successor func-
tion succ(·, ·) such that succ(Storage, (h, stnew, σTEE)) = true
if and only if h = H(stold) where stold is the latest state in
Storage and ΣTEE.Vf(pkTEE, σTEE, (h, stnew)). This guarantees
that at any time there is a single sequence of state transitions
consistent with the view of each party, i.e. the chain of state
transitions is fork-free.

B. Formal Specification of the Protocol

The Ekiden protocol is formally specified in ProtEkiden
(Fig. 2). ProtEkiden relies on Gatt and Fblockchain, ideal function-
ality for attested execution and the blockchain. ProtEkiden also
use a digital signature scheme Σ(KGen,Sig,Vf), a symmetric
encryption scheme SE(KGen,Enc,Dec) and an asymmetric
encryption scheme AE(KGen,Enc,Dec).

a) Sharing state keys: Each contract is associated with
a set of keys. As discussed in Section V-B, contract TEEs
delegate key management to key manager TEEs. In ProtEkiden,
communication with key managers is abstracted away with the
keyManager function.

b) Contract creation: To create a contract in Ekiden, a
client Pi calls the create subroutine of a compute node
Comp with input Contract, a piece of contract code. Comp

loads the ̂Contract into a TEE and starts the initialization by
invoking the “create” call. As specified in Fig. 6, the contract
TEE creates a fresh contract cid, obtains kcid from the key
manager, derives a (pkin

cid, sk
in
cid) pair and kstate

cid , and generates
an encrypted initial state st0 and an attestation σTEE. The
attestation proves the st0 is correctly initialized and that pkin

cid

is the corresponding public key for contract cid. The compute
node Comp sends (Contract, cid, st0, pk

in
cid, σTEE) to Fblockchain

and waits for an receipt. Comp returns the contract cid to
Pi, who will verify that contract cid is properly stored on
Fblockchain.

c) Request execution: To execute a request to contract
cid, a client Pi first obtains the input encryption key pkin

cid from

Fblockchain. Then Pi calls the request subroutine of Comp
with input (cid, inpct), where inpct is Pi’s input encrypted with
pkin

cid and authenticated with spki. Comp fetches the encrypted
previous state stct from Fblockchain and launches an contract
TEE with code ̂Contract and input (cid, inpct, stct).

As specified in Fig. 6, if σPi verifies, the contract TEE
decrypts stct and inpct with keys obtained from the key
manager and executes the contract program Contract to get
(stnew, outp). To ensure the new state and the output are
delivered atomically, Comp and Pi conduct an atomic delivery
protocol as specified in Section V-C:
• First the contract TEE computes outpct = Enc(kout

cid, outp)
and st′ct = Enc(kstate

cid , stnew), and send both and proper
attestation to Pi in a secure channel established by epki.

• Pi acknowledges the reception by calling the
claim-output subroutine of Comp, which triggers the
contract TEE to send m1 = (st′ct, outpct, σ) to Fblockchain.
σ protects the integrity of m1 and cryptographically
binds the new state and output to a previous state and a
input, thus a malicious Comp cannot tamper with it.

• Once m1 is accepted by Fblockchain, the contract TEE
sends the decryption of outpct to Pi in a secure channel.

C. Security of ProtEkiden

Theorem 1 characterizes the security of ProtEkiden. A proof
sketch is given in Appendix C.

Theorem 1 (Security of ProtEkiden). Assume that Gatt’s attes-
tation scheme ΣTEE and the digital signature Σ are existen-
tially unforgeable under chosen message attacks (EU-CMA),
that H is second pre-image resistant, and that AE and SE are
IND-CPA secure. Then ProtEkiden securely realizes FEkiden in
the (Gatt,Fblockchain)-hybrid model, for static adversaries.

D. Mitigating app-level leakage

While Ekiden protects within-TEE data, it is not designed to
protect data at contract interfaces, i.e., data leakage resulting
from the contract design. (E.g., a secret prediction model may
be “extracted” via client queries [65].) Common approaches
to minimizing such leakage, e.g., restricting requests based
on requester identity and/or a differential-privacy budget [19],
[32], require persistent counters. The monotonic counters in
SGX are untrustworthy, however [43].

Ekiden instead supports stateful approaches to mitigate
application-level privacy leakage by enabling persistent appli-
cation state—e.g., counters, total consumed differential privacy
budget, etc.—to be maintained securely on chain. Moreover,
the aforementioned atomic delivery guarantee ensures that the
output is only revealed if this state is correctly updated.

E. Performance Optimizations

Given an additional mechanism for revocation, a simple
modification eliminates reliance on the IAS apart from ini-
tialization. When initialized, an enclave creates a signing key
(pk, sk), and outputs pk with an attestation. Subsequently,
attestations are replaced with signatures under sk. Since pk is
bound to the TEE code (by the initial attestation), signatures

under sk prove the integrity of output, just as attestations do.
As with other keys, (pk, sk) are managed by the key manager
(c.f. Section V-B).

In Appendix D we discuss an extended version of the
protocol with several other performance optimizations.

VII. IMPLEMENTATION

In Ekiden, applications are written on top of a runtime,
which combines the contract wrapper and other common func-
tionality into an enclave program. The runtime we use in our
experiments has an interpreter for EVM and Web Assembly
(Wasm) bytecode plus libraries to support Ethereum’s account-
based state model.

We use the Fortanix Enclave Development Platform [22] to
build and run our enclave programs. We also implemented a
compiler that automatically builds contracts into executables
that can be loaded into our Ethereum compatibility runtime,
which we describe in Section VII-A.

Ekiden is compatible with many existing blockchains. We
have built one end-to-end instantiation, Ekiden-BT, with a
blockchain extending from Tendermint [37], which required
no changes to Tendermint.

A. Programming Model

We support a general-purpose programming model for spec-
ifying applications. An application has access to a mutable
key-value store as its state, which Ekiden transparently serial-
izes, encrypts, and synchronizes with the validator committee
after contract calls. An application must be deterministic and
terminate in bounded time. Within our runtime, we imple-
mented two programming environments. In the first environ-
ment, developers can write contracts using a subset of the Rust
programming language, and thus benefit from a range of open
source libraries. This environment compiles the Rust source
code to Web Assembly bytecode. For the second environment,
we ported the Ethereum Virtual Machine (EVM), thereby sup-
porting any contract written for the Ethereum platform. Both
of these environments produce bytecode which our runtime
executes in an interpreter. The interpreter isolates applications
from each other, so that they cannot directly access each
others’ state or contract keys. Applications interpreted in this
runtime runtime share an enclave, so they can call each other
seamlessly.

B. Applications

We now describe several different applications we devel-
oped to show the versatility of Ekiden’s programming model.
Figure 3 highlights the secret state and application complexity
of each contract.

a) Tokens: The most popular kind of Ethereum con-
tract is the ERC20 token standard. Using the Ethereum port
(Section VII-A), we can run existing ERC20 token contracts.
Ekiden automatically provides privacy and anonymity, which
the contract would not receive on the Ethereum mainnet. The
secret state in the token the account balance for each user.

b) CryptoKitties: CryptoKitties [1] is an Ethereum game
that allows users to breed virtual cats, which are stored on
chain as ERC721 tokens [2]. Each cat has a unique set of
genes that determine its appearance and therefore its value.
The traits of offspring are determined by a smart contract that
mixes the genes of its parents. The source code of the gene
mixing contract is not publicly available: The game developers
aimed to make the breeding process unpredictable.

We obtained the bytecode for the gene mixing contract from
the Ethereum blockchain and executed it using our Ekiden
Ethereum compatibility runtime. We verified correct behavior
by reproducing real transactions from the Ethereum network.

This example demonstrates that Ekiden can execute an
Ethereum contract even when source code is not available.
Further, Ekiden can provide unique benefits for smart contracts
requiring secrecy or unpredictability such as CryptoKitties.
These properties are difficult to achieve with Ethereum. E.g.,
the CryptoKitties gene mixing algorithm has been reverse-
engineered [71], which allows strategic players to optimize
their chance of breeding cats with rare traits, thus undermining
the game’s ecosystem. By contrast, an Ekiden contract has
access to a source of randomness in hardware and allows secret
elements of a game’s algorithm to be stored in encrypted state.

c) Origin: Origin [54] is a platform for building online
marketplaces on top of Ethereum. We ported a demo applica-
tion which allows users to list and purchase items with Ether.
This application further demonstrates that development frame-
works built for Ethereum can be easily used by Ekiden: the
smart contracts used in the demo work without modification;
we were able to integrate the rest of the demo, namely, a user-
facing web server, with minor modifications. Built on Ekiden,
users’ transaction history in the blockchain are kept private,
and transactions are confirmed faster than on Ethereum.

VIII. RELATED WORK

Confidential smart contracts: Hawk [34] is a smart contract
system that provides confidentiality by executing contracts
off-chain and posting only zero-knowledge proofs on-chain.
As the zero-knowledge proofs in Hawk (zk-SNARKs) incur
very high computational overhead, Ekiden is significantly
faster. Additionally, Hawk was designed for a single compute
node (called the “manager”), and thus cannot (as designed)
offer high availability. While Ekiden does require trust in the
security of Intel SGX, Hawk’s “manager” must be trusted for
privacy. Hawk supports only a limited range of contract types,
not the general functionality of Ekiden.

The idea of combining ledgers with trusted hardware for
smart contract execution is briefly mentioned in Hawk and also
treated in [17], [33]. [17] combines blockchain with TEE to
achieve one-time programs that resemble smart contracts but
only aim for a restricted functionality (one-shot MPC with
N parties providing input). [33] includes a basic prototype,
but omits critical system design issues; e.g., its permission-
less “proof-of-publication” overlooks the technical difficulties
arising from lack of trusted wall-clock time in enclaves.

ProtEkiden(λ,AE,SE,Σ, {Pi}i∈[N])
1 : Clients Pi:

2 : Initialize: (sski, spki)←$ Σ.KGen(1λ)

3 : (eski, epki)←$ AE.KGen(1λ)

4 : On receive (“create”,Contract) from environment Z:
5 : cid := create(Contract); assert cid initialized on Fblockchain

6 : output (“receipt”, cid)

7 : On receive (“request”, cid, inp, eid) from environment Z:
8 : σPi

:= Sig(sski, (cid, inp))

9 : get pkin
cid from Fblockchain;

10 : let inpct := AE.Enc(pkin
cid, (inp, σPi

))

11 : (st′ct, outpct, σ) := request(cid, inpct)

12 : parse σ as (σTEE, hinp, hold, houtp, spki)

13 : assert H(inpct) = hinp; assert outpct is correct by verifying σ

14 : o := claim-output(cid, st′ct, outpct, σ, epki)

15 : // retry if the previous state has been used by a parallel query

16 : if o = ⊥ then jump to the beginning of the “request” call

17 : parse o as (outp′ct, σTEE)

18 : assert ΣTEE.Vf(pkTEE, σTEE, outp
′
ct) // pkTEE := Gatt.getpk()

19 : output AE.Dec(eski, outp′ct)

20 : On receive (“read”, cid) from environment Z:
21 : send (“read”, cid) to Fblockchain and relay output

22 : Compute Nodes Subroutines (called by clients Pi):

23 : On input create(Contract):

24 : send (“install”, ̂Contract) to Gatt, wait for eid
25 : send (eid, “resume”, (“create”)) to Gatt

26 : wait for ((Contract, cid, st0, pkin
cid), σTEE)

27 : send (“write”, (Contract, cid, st0, pkin
cid, σTEE)) to Fblockchain

28 : wait to receive (“receipt”, cid)

29 : On input request(cid, inpct):

30 : send (“read”, cid) to Fblockchain and wait for stct

31 : // non-existing eid is assumed to be created transparently

32 : send (eid, “resume”, (“request”, cid, inpct, stct)) to Gatt

33 : receive ((“atom-deliver”, hinp, hold, st
′
ct, houtp, spki), σTEE, outpct)

34 : // σTEE = ΣTEE.Sig(skTEE, (hinp, hold, st
′
ct, houtp, spki))

35 : let σ := (σTEE, hinp, hold, houtp, spki)

36 : return (st′ct, outpct, σ)

37 : On input claim-output(cid, st′ct, outpct, σ, epki):
38 : send (“write”, cid, (st′ct, σ)) to Fblockchain

39 : if receive (“reject”, cid) from Fblockchain then : return ⊥
40 : send (eid, “resume”, (“claim output”, st′ct, outpct, σ, epki)) to Gatt

41 : receive (“output”, outp′ct, σTEE) from Gatt or abort
42 : return (outp′ct, σTEE)

Fig. 2. Ekiden Protocol. The contract TEE program ̂Contract is defined in Figure 6, in Appendix A.

Application Language LoC Secret Input/Output Secret State
ERC20 Token Solidity 68 Transfer (from, to, amount) Account balances
CryptoKitties EVM Bytecode 54∗ Random mutations Breeding algorithm
Origin Demo Solidity, JS 19∗ Purchase orders Purchase history

Fig. 3. Ekiden applications. For each, we specify the implementation language, development effort (LoC), as well as secret inputs, outputs, and state. Secret
inputs and outputs are only accessible to the contract and the invoking user. Secret state is only accessible to the contract. For CryptoKitties and Origin Demo,
we only include LoC specific to porting, as marked by ∗.

Ekiden is also closely related to and influenced by Hyper-
ledger Private Data Objects (PDO) [11] from Intel. PDOs use
smart contracts, executed in SGX enclaves, to mediate access
to data objects shared amongst mutually distrusting parties.
To the best of our knowledge, PDOs target permissioned and
managed settings (requiring, e.g., special-purpose validation
rules), while Ekiden supports permisionless and open settings
as well. This leads to key technical differences. For example,
PDO uses a set of Provisioning Services to store encryption
keys without worrying about availability risk, which cannot be
easily realized in the Ekiden setting where churn is possible. In
contrast, Ekiden uses a secret-sharing-based key management
protocol that tolerates churn and allows flexible committee
reconfiguration.

The Microsoft Coco Framework [47] is concurrent and
independent work to port existing smart contract systems,
such as Ethereum, into an SGX enclave. To the best of
our knowledge, only a whitepaper containing a high-level
overview has been produced. No details of a protocol or
implementation have yet been released.

Blockchain transaction privacy: Ekiden’s goals relate to

mechanisms for enhancing transaction privacy on public
blockchains. Maxwell proposed a confidential transaction
scheme [44] for Bitcoin that conceals transaction amounts,
but not identities. Zerocash [6] as well as Cryptonote [62],
[67], Solidus [15], and Zerocoin [48] provides stronger confi-
dentiality guarantees by concealing identities. These schemes,
however, do not support smart contracts.

Privacy-preserving systems based on trusted hardware:
Trusted hardware, particularly Intel SGX, has seen a wide
spectrum of applications in distributed systems. M2R [18],
VC3 [61], Opaque [70] and Ohrimenko et al. [52] leverage
SGX to offer privacy-preserving data analytics and machine
learning with various security guarantees, Ryoan [28] is a
distributed sandbox platform using SGX to confine privacy
leakage from untrusted applications that process sensitive data.
These systems do not address state integrity and confidentiality
over a long-lived system. In comparison, Ekiden provides
a stronger integrity and availability guarantees by persisting
contract states on a blockchain.

Blockchains for verifiable computations and secure multi-

party computations: Several related works offer blockchain-
based guarantees of computation integrity, but cannot guar-
antee privacy [41], [64], [63]. Other works have used a
blockchain for fairness in MPC by requiring parties to forfeit
security deposits if they abort [8], [36], [35], [5], [72], [17].
Compared to these, Ekiden can guarantee that all data can
be recovered if any compute node remains online. TEE-
based computation is also far more performant than MPC.
A theoretical scheme [24] combines witness encryption with
proof-of-stake blockchains to achieve one-time programs that
resemble smart contracts but avoid use of trusted hardware.
This scheme is regrettably even more impractical than MPC.

IX. CONCLUSION

Ekiden demonstrates that blockchains and trusted enclaves
have complementary security properties that can be com-
bined effectively to provide a powerful, generic platform
for confidentiality-preserving smart contracts. The result is
a compelling programming model that overcomes significant
challenges in blockchain smart contracts. We show that Ekiden
can be used to implement a variety of secure decentralized
applications that compute on sensitive data.

In future work we plan to extend Ekiden to operate under
a stronger threat model, leveraging techniques such as secure
multi-party computation [39], [17], [5], to protect the system’s
more critical features, such as key management and coordina-
tion across compute nodes. Coordination can also facilitate
parallelism in contract execution, merging concurrent output
from multiple enclaves to obtain still higher performance from
Ekiden.

ACKNOWLEDGMENTS

We wish to thank the authors of the Ekiden paper, Raymond
Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song, for
their contributions to the research project leading up to this
work.

We wish to thank Intel, and Mic Bowman in particular,
for ongoing research discussions and generous support of a
number of aspects of this work. Our discussions regarding
Intel’s PDO system illuminated important technical challenges
in Ekiden and influenced and helped us refine its design.

We also wish to thank Iddo Bentov, Joe Near, Chang
Liu, Jian Liu, and Lun Wang for their helpful feedback and
discussion. We also thank Pranav Gaddamadugu and Andy
Wang for their contributions to application development. This
material is in part based upon work supported by the Center for
Long-Term Cybersecurity, DARPA (award number N66001-
15-C-4066) IC3 industry partners, and the National Sci-
ence Foundation (NSF award numbers TWC-1518899 CNS-
1330599, CNS-1514163, CNS-1564102, CNS-1704615, and
ARO W911NF-16-1-0145). This work was also supported in
part by FORCES (Foundations Of Resilient CybEr-Physical
Systems), which receives support from the National Sci-
ence Foundation (NSF award numbers CNS-1238959, CNS-
1238962, CNS-1239054, CNS-1239166). Any opinions, find-

ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] “CryptoKitties - Collect and breed digital cats,” https://www.
cryptokitties.co/.

[2] “EIP 721: ERC-721 Non-Fungible Token Standard,” https://eips.
ethereum.org/EIPS/eip-721.

[3] “Keystone Project,” https://keystone-enclave.github.io/.
[4] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology

for CPU based attestation and sealing,” in HASP’13, 2013, pp. 1–7.
[5] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,

“Secure multiparty computations on Bitcoin,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 443–458.

[6] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in IEEE Symposium on Security and Privacy, 2014.

[7] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and
A. Juels, “Tesseract: Real-time cryptocurrency exchange using trusted
hardware,” 2017, https://eprint.iacr.org/2017/1153.

[8] I. Bentov, R. Kumaresan, and A. Miller, “Instantaneous decentralized
poker,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2017, pp. 410–440.

[9] T. Bernard, T. Hsu, N. Perlroth, and R. Lieber, “Equifax Says Cyberat-
tack May Have Affected 143 Million in the U.S.” https://www.nytimes.
com/2017/09/07/business/equifax-cyberattack.html.

[10] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a
new cryptographic library,” in LatinCrypto, 2012.

[11] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data objects:
an overview,” arXiv preprint arXiv:1807.05686, 2018.

[12] E. Brickell and J. Li, “Enhanced privacy id from bilinear pairing,”
Cryptology ePrint Archive, Report 2009/095, 2009, https://eprint.iacr.
org/2009/095.

[13] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and ran-
domness beacons in Ethereum,” IEEE Security and Privacy on the
Blockchain (IEEE S&B), 2017.

[14] R. Canetti, “Universally Composable Security: A New Paradigm for
Cryptographic Protocols,” Cryptology ePrint Archive, Report 2000/067,
2000, https://eprint.iacr.org/2000/067.

[15] E. Cecchetti, F. Zhang, Y. Ji, A. E. Kosba, A. Juels, and E. Shi, “Solidus:
Confidential distributed ledger transactions via PVORM,” in ACM CCS,
2017.

[16] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 4th IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

[17] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in ACM CCS, 2017.

[18] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M2R:
Enabling Stronger Privacy in MapReduce Computation,” in USENIX
Security, 2015.

[19] C. Dwork, “Differential privacy: A survey of results,” in International
Conference on Theory and Applications of Models of Computation.
Springer, 2008, pp. 1–19.

[20] Ethereum Foundation, “Ethereum: Blockchain App Platform,” https://
www.ethereum.org/.

[21] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
functional encryption using Intel SGX,” in ACM CCS, 2017.

[22] Fortanix, Inc., “Fortanix enclave development platform,” 2019, https:
//edp.fortanix.com/.

[23] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1999, pp. 295–310.

[24] R. Goyal and V. Goyal, “Overcoming cryptographic impossibility results
using blockchains,” in Theory of Cryptography Conference. Springer,
2017, pp. 529–561.

[25] S. Gueron, “A memory encryption engine suitable for general purpose
processors.” IACR Cryptology ePrint Archive, vol. 2016, p. 204, 2016.

https://www.cryptokitties.co/
https://www.cryptokitties.co/
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://keystone-enclave.github.io/
https://eprint.iacr.org/2017/1153
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2000/067
https://www.ethereum.org/
https://www.ethereum.org/
https://edp.fortanix.com/
https://edp.fortanix.com/

[26] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in Advances in
Cryptology — CRYPT0’ 95, D. Coppersmith, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 339–352.

[27] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software solutions,”
in HASP, 2013.

[28] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in USENIX OSDI,
2016.

[29] IBISWorld, “Credit Bureaus & Rating Agencies in the US,” http:
//clients1.ibisworld.com/reports/us/industry/ataglance.aspx?entid=1475.

[30] Intel, “Intel SGX platform services,” https://software.intel.com/
sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf,
(Accessed on 01/29/2018).

[31] “GitHub discussion on sgx get trusted time,” Intel SGX SDK Devel-
opers, 9 2017, https://github.com/intel/linux-sgx/issues/161.

[32] N. M. Johnson, J. P. Near, and D. X. Song, “Practical differential privacy
for SQL queries using elastic sensitivity,” CoRR, vol. abs/1706.09479,
2017. [Online]. Available: http://arxiv.org/abs/1706.09479

[33] G. Kaptchuk, I. Miers, and M. Green, “Giving state to the stateless:
Augmenting trustworthy computation with ledgers,” Cryptology ePrint
Archive, Report 2017/201, 2017. https://eprint. iacr. org/2017/201, Tech.
Rep., 2017.

[34] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE Security and Privacy, 2016.

[35] R. Kumaresan and I. Bentov, “Amortizing secure computation with
penalties,” in ACM CCS, 2016.

[36] R. Kumaresan, T. Moran, and I. Bentov, “How to use Bitcoin to play
decentralized poker,” in ACM CCS, 2015.

[37] J. Kwon, “Tendermint: Consensus without mining,” 2014.
[38] J. Leimgruber and A. M. J. Backus, “Bloom protocol:decentralized credit

scoring powered by Ethereum and IPFS,” 27 Jan. 2018.
[39] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-

preserving data mining,” Journal of Privacy and Confidentiality, vol. 1,
no. 1, p. 5, 2009.

[40] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A
programming framework for secure computation,” in IEEE Security and
Privacy (S&P), 2015.

[41] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives
in the consensus computer,” in ACM CCS, 2015.

[42] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and
D. Song, “Churp: Dynamic-committee proactive secret sharing.” IACR
Cryptology ePrint Archive, vol. 2019, p. 17, 2019.

[43] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted
execution,” in USENIX Security Symposium, USENIX Security, 2017.

[44] G. Maxwell, “Confidential values,” https://people.xiph.org/∼greg/
confidential values.txt, (Accessed on 01/31/2018).

[45] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in HASP, 2013.

[46] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of Bitcoins: characterizing payments
among men with no names,” in Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pp. 127–140.

[47] Microsoft, “The Coco Framework: Technical Overview,” https://github.
com/Azure/coco-framework/.

[48] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in IEEE Security and Privacy, S&P,
2013.

[49] M. Möser and R. Böhme, “The price of anonymity: empirical evidence
from a market for Bitcoin anonymization,” Journal of Cybersecurity,
2017.

[50] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random
functions and KDCs,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999.

[51] K. Nayak, C. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi, and
V. Goyal, “Hop: Hardware makes obfuscation practical,” in 24th Annual
Network and Distributed System Security Symposium, NDSS, 2017.

[52] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors.” in USENIX Security Symposium, 2016, pp. 619–636.

[53] D. O’Keeffe, “SGXSpectre,” 2018, https://github.com/lsds/spectre-
attack-sgx.

[54] Origin Protocol, Inc., “Origin protocol,” https://www.originprotocol.
com/, 2018.

[55] R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested execu-
tion secure processors,” Cryptology ePrint Archive, Report 2016/1027,
2016, https://eprint.iacr.org/2016/1027.

[56] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in 24th USENIX Security Symposium
(USENIX Security), 2015.

[57] F. Reid and M. Harrigan, “An analysis of anonymity in the Bitcoin
system,” in Security and privacy in social networks. Springer, 2013,
pp. 197–223.

[58] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin trans-
action graph,” in International Conference on Financial Cryptography
and Data Security. Springer, 2013, pp. 6–24.

[59] D. Ryan, “Calculating Costs in Ethereum Contracts,” https://hackernoon.
com/ether-purchase-power-df40a38c5a2f.

[60] D. Schultz, B. Liskov, and M. Liskov, “MPSS: Mobile proactive
secret sharing,” ACM Transactions on Information and System Security
(TISSEC), vol. 13, no. 4, p. 34, 2010.

[61] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015, pp. 38–54.

[62] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, “Ringct 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero,” in European Symposium on Research in Com-
puter Security. Springer, 2017, pp. 456–474.

[63] J. Teutsch, V. Buterin, and C. Brown, “Interactive coin offerings,” URl:
https://people. cs. uchicago. edu/˜ teutsch/papers/ico. pdf (visited on
11/16/2017), 2017.

[64] J. Teutsch and C. Reitwießner, “Truebit: a scalable verification solution
for blockchains,” 2017.

[65] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in USENIX Security
Symposium, 2016, pp. 601–618.

[66] F. Tramer, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi, “Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge,” in
IEEE European Symposium on Security and Privacy (EuroS&P), 2017.

[67] N. Van Saberhagen, “Cryptonote v2.0,” 2013.
[68] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-

istic side channels for untrusted operating systems,” in IEEE Symposium
on Security and Privacy, SP, 2015, pp. 640–656.

[69] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. V. Renesse, “REM:
Resource-efficient mining for blockchains,” in USENIX Security Sym-
posium (USENIX Security), Vancouver, BC, 2017.

[70] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[71] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey,
“Erays: Reverse engineering ethereum’s opaque smart contracts,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[72] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in Security and Privacy Workshops (SPW),
2015 IEEE. IEEE, 2015, pp. 180–184.

APPENDIX

A. Supplementary Formalism

1) Ideal Blockchain: We specify the ideal functionality for
a blockchain in Fig. 4.

2) Ideal functionality FEkiden: We specify the security goals
of Ekiden in the ideal functionality FEkiden defined in Figure 5.
FEkiden allows parties to create contracts and interact with

them. Each party Pi is identified by a unique id simply denoted
Pi. Parties send messages over authenticated channels. To
capture the allowed information leakage from the encryption,
we follow the convention of [14] and parameterize FEkiden
with a leakage function ℓ(·). We use the standard delayed

http://clients1.ibisworld.com/reports/us/industry/ataglance.aspx?entid=1475
http://clients1.ibisworld.com/reports/us/industry/ataglance.aspx?entid=1475
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
http://arxiv.org/abs/1706.09479
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/Azure/coco-framework/
https://github.com/Azure/coco-framework/
https://www.originprotocol.com/
https://www.originprotocol.com/
https://eprint.iacr.org/2016/1027
https://hackernoon.com/ether-purchase-power-df40a38c5a2f
https://hackernoon.com/ether-purchase-power-df40a38c5a2f

Fblockchain[succ]1 : Parameter: successor relationship succ : {0, 1}∗ × {0, 1}∗ → {0, 1}
2 : On receive (“init”): Storage := ∅
3 : On receive (“read”, id): output Storage[id], or ⊥ if not found

4 : On receive (“write”, id, inp) from P :

5 : let val := Storage[id], set to ⊥ if not found

6 : if succ(val, inp) = 1 then

7 : Storage[id] := val ∥ (inp,P); output (“receipt”, id)

8 : else output (“reject”, id)

9 : On receive (“∈”, id, val):

10 : if val ∈ Storage[id] then output true else output false

Fig. 4. Ideal blockchain. The parameter succ defines the validity of new
items. A new item can only be appended to the storage if the evaluation of
succ outputs 1.

FEkiden(λ, ℓ, {Pi}i∈[N])1 : Parameter: leakage function ℓ : {0, 1}∗ → {0, 1}∗

2 : On receive (“init”): Storage := ∅

3 : // Create a new contract
4 : On receive (“create”,Contract) from Pi for some i ∈ [N]:

5 : cid←$ {0, 1}λ

6 : notify A of (“create”,Pi, cid,Contract); block until A replies

7 : Storage[cid] := (Contract, 0⃗)

8 : send a public delayed output (“receipt”, cid) to Pi

9 : // Send queries to a contract

10 : On receive (“request”, cid, inp, eid) from Pi for some i ∈ [N]:

11 : notify A of (“request”, cid,Pi, ℓ(inp))

12 : (Contract, st,) := Storage[cid]; abort if not found

13 : (outp, st′) := Contract(Pi, inp, st)

14 : let ℓst = ℓ(st)

15 : notify A of (cid, ℓst′ , ℓ(outp), eid)

16 : wait for “ok” from A and halt if other messages received

17 : update Storage[cid] := (Contract, st′, ℓst′)

18 : send a secret delayed output outp to Pi

19 : // Allow public access to encrypted state

20 : On receive (“read”, cid) from Pi for some i ∈ [N]:

21 : (, , ℓst) := Storage[cid]; abort if not found

22 : send ℓst to Pi

23 : if Pi is corrupted: send ℓst to A

Fig. 5. The ideal functionality of Ekiden.

output terminology [14] to model the power of the network
adversary. Specifically, when FEkiden sends a delayed output
outp to P , this means that outp is first sent to the adversary
A and forwarded to P after acknowledgement by A. If the
message is secret, only the allowed amount of leakage (i.e.,
that specified by the leakage function) is revealed to S.

A Contract is a user-provided program. Each smart contract
is associated with a piece of persistent storage where the
contract code and st can be stored. The storage is public;
therefore FEkiden allows any party, including A, to read the
storage content. The information leakage through such reading
is also defined by the leakage function ℓ.

Users can send queries to FEkiden to execute the contract
code with user-provided input. The execution of a contract
will result in a secret output (denoted outp) returned to the
invoker and a secret transition to a new contract state (denoted

Contract TEE wrapper ̂Contract1 : On input (“create”) :

2 : cid := H(Contract)

3 : (pkin
cid, sk

in
cid) := keyManager(“input key”)

4 : kstate
cid := keyManager(“state key”)

5 : st0 = SE.Enc(kstate
cid , 0⃗)

6 : return (Contract, cid, state0, pk
in
cid)

7 : On input (“request”, cid, inpct, stct):

8 : // retrieve skin
cid, k

state
cid from a key manager as above

9 : (inp, σPi
) := AE.Dec(skin

cid, inpct)

10 : assert Vf(σPi
, spki, (cid, inp)) // spki is publicly known

11 : stold := SE.Dec(kstate
cid , stct)

12 : stnew, outp := Contract(stold, inp, spki)

13 : st′ct := SE.Enc(k
state
cid , stnew)

14 : // initiate atomic delivery

15 : kout
cid := keyManager(“output key”)

16 : outpct := SE.Enc(k
out
cid, outp)

17 : let hinp := H(inpct), hold := H(stct), houtp = H(outpct)

18 : return ((“atom-deliver”, hinp, hold, st
′
ct, houtp, spki), outpct)

19 : On input (“claim output”, st′ct, outpct, σ, epki):

20 : parse σ as (σTEE, hinp, hold, houtp, spki)

21 : assert H(outpct) = houtp

22 : send (“∈”, cid, (st′ct, σ)) to Fblockchain

23 : receive true from Fblockchain or abort

24 : kout
cid := keyManager(“output key”)

25 : outp := SE.Dec(kout
cid, outpct)

26 : return (“output”,AE.Enc(epk, outp))

Fig. 6. Contract TEE wrapper.

st′), equivalent intuitively to black-box contract execution
(modulo leakage). Although any party may send messages to
the contract, the contract code can enforce access control based
on the calling pseudonym passed to the contract.

a) Corruption model: FEkiden adopts the standard cor-
ruption model of [14]. A can corrupt any number of clients,
and up to all but one contract executors. When A corrupts a
TEE (or similarly a party), A sends the message (“corrupt”,
eid) to FEkiden. If a query includes an invalid TEE id, FEkiden
aborts if instructed by A. Otherwise the ideal functionality
ignores eids, which are included in FEkiden only as a technical
requirement to ensure interface compatibility with ProtEkiden,
given below.

3) Contract TEE wrapper: The contract TEE wrapper
̂Contract is specified in Fig. 6.

B. Proof of Publication

The protocol for proof of publication is specified in Fig. 7.

C. Proof of Main Theorem

Here we give our proof of Theorem 1, given in Section VI.
We prove that ProtEkiden[λ,AE ,SE ,Σ, {Pi}i∈[N]] UC-

realizes the ideal functionality FEkiden[λ, ℓ, {Pi}] with respect
to a leakage function ℓ(x) that only reveals the length of x,
i.e. ℓ(x) = 0|x|. In the protocol, ℓ(·) is realized with IND-CPA
encryption schemes.

Proof of Publication of m between verifier E and prover P1 : Parameters:

2 : nc: publication of m needs at least nc confirmation

3 : CB : a recent checkpoint block

4 : δ(CB): difficulty of CB

5 : τ : expected block interval of main chain

6 : ϵ: slackness factor

7 : Verifier E (a contract TEE):

8 : t1 ← TEE.timer()

9 : r ←$ {0, 1}λ

10 : send (m, r) to P
11 : receive π(m,r) = (CB,B1, · · · , Bn) from P
12 : t2 ← TEE.timer()

13 : if π(m,r) is not a valid chain, output false

14 : let Bi ∈ π(m,r) be the block that contains (m, r), output false if ∄Bi

15 : if Bi has less than nc confirmation, i.e. n− i < nc, output false

16 : if any B ∈ π(m,r) has a lower difficulty than δ(CB), output false

17 : if t2 − t1 < (n− i)× τ × ϵ: output true and update checkpiont CB = Bn

18 : else : output false

19 : Prover P:
20 : On receive (m, r) from E :

21 : send (m, r) to the blockchain, denote the including block Bi

22 : send a subchain from CB to Bi+nc (inclusive) to E

Fig. 7. Proof of Publication

Proof. Let Z be an environment and A be a “dummy adver-
sary” [14] who simply relays messages between Z and parties.
To show that ProtEkiden UC-realizes FEkiden, we specify below
a simulator Sim such that no environment can distinguish an
interaction between ProtEkiden and A from an interaction with
FEkiden and Sim, i.e. Sim satisfies

∀Z,EXECProtEkiden,A,Z ≈ EXECFEkiden,Sim,Z .

a) Construction of Sim: Sim generally proceeds as fol-
lows: if a message is sent by an honest party to FEkiden,
Sim emulates appropriate real world “network traffic” for Z
with information obtained from FEkiden. If a message is sent
to FEkiden by a corrupted party, Sim extracts the input and
interacts with the corrupted party with the help of FEkiden. We
provide further details on the processing of specific messages.

(1) Contract creation:
• If Pi is honest, Sim obtains (Pi, cid,Contract) from
FEkiden and emulates an execution of the “create” call
of ProtEkiden.

• If Pi is corrupted, Sim extracts Contract from Z . On
behalf of Pi, Sim sends (“create”,Contract) to FEkiden
and instructs FEkiden to deliver the output.

• In both cases, Sim simulates the interaction between
Fblockchain and Gatt, on behalf of the adversary or honest
parties.

(2) Query execution:
Case 1: When an honest party Pi is given input
(“request”, cid, inp, eid) by Z , Sim works as follows:
• Upon receiving (cid,Pi, ℓ(inp)) from FEkiden, Sim queries

the “read” interface of FEkiden to obtain the dummy state

(i.e. a random string with the same length as the real state)
of cid, denoted s. Sim computes cinp = Enc(pkin

cid, 0⃗) with
length ℓ(inp), and emulates a “resume” message to Gatt
with input (“request”, cid, cinp, s) on behalf of Pi.

• Upon receiving ℓst′ and ℓ(outp) from FEkiden, Sim
computes c = Enc(kout

cid, 0
|outp|) and emulates a message

((“atom-deliver”,H(cinp),H(s), ℓst′ ,H(c), spki), σTEE, c)
from Gatt to Pi.

• Sim proceeds by emulating the interaction
between Fblockchain and Gatt, and a message
(“output”,Enc(epki, 0

|outp|), σTEE) from Gatt to Pi.
• Finally, Sim instructs FEkiden by sending a “ok” message.

Case 2: When a corrupted party Pi is given input
(“request”, cid, inp, eid) by Z , Sim learns the input when Sim
works as follows:

• If Pi sends (“read”, cid) to Fblockchain, Sim obtains the
latest state (denoted s) from FEkiden, and sends s to Pi

on behalf of Fblockchain.
• If Pi sends a “resume” message to Gatt with input
(“request”, cid, inpct, s), Sim emulates Gatt as follows: Sim
queries FEkiden to check if s is not the latest state, Sim
aborts. Sim computes inp′ = Dec(skin

cid, inpct). Then Sim
sends (“request”, cid, inp′, eid) to FEkiden on Pi’s behalf.

• Upon receiving ℓst′ct
and ℓ(outp) from FEkiden, Sim

computes c = Enc(kout
cid, 0

|outp|) and sends
((“atom-deliver”,H(inpct),H(s), ℓst′ct

,H(c)), σTEE, c)
from Gatt to Pi. Sim records c.

• If Pi sends a “resume” message to Gatt with input
(“claim output”, cid, (st′ct, outpct, σ, epki)), Sim emulates
Gatt as follows: Sim first checks that Gatt has previously
sent outpct to Pi and that (st′ct, σ) has been stored by
Fblockchain. Sim aborts if any of the above checks fails.
Sim obtains outp from FEkiden and sends
(“output”,Enc(epki, outp), σ) to Pi.

(3) Public read: On any call (“read”, cid) from Pi, Sim
emulates a “read” message to Fblockchain. If Pi is corrupted,
Sim sends to FEkiden a “read” message on Pi’s behalf and
forward the response to A.

(4) Corrupted enclaves:
Sim obtains eids of corrupted enclaves when Z corrupts

them. In real world, Z could terminate a corrupted enclave
at any point, or could strategically drop some messages while
letting others go through. To faithfully emulate Z’s “damage”,
Sim sends every messages leaving or entering a corrupted
enclave to Z and only delivers the message if Z permits.
Sim instructs FEkiden to abort if the emulated execution is
terminated by Z prematurely. Specifically, upon receiving
(cid, ℓ(st′), ℓ(outp), eid) from FEkiden, Sim replies with “ok”
only if the corresponding “output” message from Gatt is
allowed by Z .

b) Validity of Sim: We show that no environment can
distinguish an interaction withA and ProtEkiden from one with
Sim and FEkiden by hybrid arguments. Consider a sequence
of hybrids, starting with the real protocol execution. Hybrid

H1 lets Sim to emulate Gatt and Fblockchain. H2 filters out the
forgery attacks against ΣTEE. H3 filters out the second pre-
image attacks against the hash function. H4 has Sim emulate
the creation phase. H5 replaces the encryption of input and
output with encryption of 0, and replaces encryption of states
with random strings with the same length. The indispensability
between adjacent hybrids are shown below.

Hybrid H1 proceeds as in the real world protocol, except that
Sim emulates Gatt and Fblockchain. Specially Sim generates a key
pair (pkTEE, skTEE) for ΣTEE and publishes pkTEE. Whenever
A wants to communicate with Gatt, Sim records A’s messages
and faithfully emulates Gatt’s behavior. Similarly, Sim emulates
Fblockchain by storing items internally.

As A’s view in H1 is perfectly simulated as in the real
world, Z cannot distinguish between H1 and the real execu-
tion.

Hybrid H2 proceeds as in H1, except for the following
modifications. If A invoked Gatt with a correct message
(“install”, ̂Contract), then for all sequential “resume” calls,
Sim records a tuple (outp, σTEE) where outp is the output of
̂Contract and σTEE is an attestation under skTEE. Let Ω denote

the set of all such tuples. Whenever A sends an attested output
(outp, σTEE) ̸∈ Ω to Fblockchain or an honest party Pi, Sim
aborts.

The indistinguishability between H1 and H2 can be shown
by the following reduction to the the EU-CMA property of
Σ: In H1, if A sends forged attestations to Fblockchain or Pi,
signature verification by Fblockchain or an honest party Pi will
fail with all but negligible probability. If Z can distinguish H2

from H1, Z and A can be used to win the game of signature
forgery.

Hybrid H3 is the same as H2 besides the following modifica-
tions. If A invoked Gatt with a correct “request” message, Sim
records execution result outpct before outputting it. Whenever
A sends to Gatt a “claim output” message with a input outp′ct
that is not previously generated by Gatt, Sim aborts.

The indistinguishability between H3 and H2 can be shown
by a reduction to the second pre-image resistance property of
the hash function. In H2, A obtains H =

{
H(outpict)

}
i

and
O =

{
outpict

}
i

from Gatt through “request” calls. If A sends a
“claim output” message with outpct ̸∈ O, Gatt aborts unless a
H(outpct) ∈ H. If Z can distinguish H3 from H2, it follows
that A can break the second pre-image resistancy.

Hybrid H4 is the same as H3 but has Sim emulate the contract
creation, i.e. honest parties will send “create” to FEkiden. Sim
emulates messages from Gatt and Fblockchain as described above.
If Pi is corrupted, Sim sends (“create”,Contract) to FEkiden
as Pi.

It is clear that the A’s view is distributed exactly as in H3,
as Sim can emulate Gatt and Fblockchain perfectly.

Hybrid H5 is the same as H4 except that honest parties
also sends “request” messages to FEkiden. If Pi is corrupted,

Sim emulates real-world messages with the help of FEkiden, as
described above.

In A’s view, the difference between H5 and H4 are the
following.
• Any message (“atom-deliver”, hinp, hold, s, houtp, c) sent

from Gatt to Pi with s = SE .Enc(kstate
cid , st′) and

c = SE .Enc(kout
cid, outp)) in H4 is replaced with

(“atom-deliver”, hinp, hold, ℓst′ct
,H(c′), c′) where c′ =

Enc(kout
cid, 0

|c|). Recall that ℓst′ct
is a random string with

length |st′ct| chosen by FEkiden when generating state stct.
• If Pi is an honest party, any message
(“request”, cid,AE .Enc(pkin

cid, inp), s) sent to
Gatt is replaced with (“request”, cid, c′, s)
where c′ = Enc(pkin

cid, 0), and any message
(“output”,AE .Enc(kout

cid, outp)) sent from Gatt to Pi

is replaced with (“output”,Enc(epki, 0)).
Indistinguishability between H5 and H4 can be directly

reduced to the IND-CPA property of AE and SE . Having no
knowledge of the secret key, A cannot distinguish encryption
of 0⃗ from encryption of other messages. Note that we don’t
require IND-CCA security becauseA do not have direct access
to an decryption oracle.

It remains to observe that H5 is identical to the ideal pro-
tocol. Throughout the simulation, we maintain the following
invariant: FEkiden always has the latest state, regardless who
created the contract and who has queried the contract. This
invariant ensures that H5 precisely reflects ideal execution of
FEkiden.

D. Ekiden Performance Extensions

In this section we discuss several performance optimizations
to the simple protocol. Together, these optimizations reduce
the number of round trips and storage capacity required
from the blockchain, and reduce work for compute nodes.
Despite the performance improvements, all optimizations are
transparent to the security interface: we use the same ideal
functionality for both the simple and extended protocols. We
present a formal protocol block defining the enhanced protocol
Protfull

Ekiden in Figure 8. For now, we provide a high-level
description of the insight and challenges involved in each
application.

a) Using a Merkleized state store: In the original proto-
col, the entire encrypted state stct is written to the blockchain
after each query. The entire state needs to be re-encrypted be-
cause the modification side-effect should not leak information
to the adversary. However, this approach is inefficient when
each st is very large yet each query modifies only a small part.
In our Token application, for example, we model a token with
500,000 different user accounts, even though each transaction
only debits one account and credits one other.

We observe that a Merkleized data structure, where the data
is broken down into pieces and a “root hash” cryptographically
summarizes the collection of pieces, would allow us to effi-
ciently store and update pieces of the state and be able to verify
its integrity with a single root hash tracked by the validator
committee. To read a piece of the current state, the enclave

must retrieve the state root hash from the validator committee
and Merkle tree nodes from the storage committee to verify
a read’s authenticity. In the token transaction, each transac-
tion touches a constant number of records, hence requiring
O(T log(M)) storage complexity for T transactions if there
are M users, compared to O(MT) in the simple protocol.

The set of Merkle tree nodes used may leak information
about which query was invoked. We note that the ideal
functionality FEkiden is parameterized by a leakage function ℓ,
such that the notation is in place to model the effect leakage
resulting from Merkle tree queries.

b) Caching intermediate states at the enclave: In the
simple protocol, each round begins with reading the state
ciphertext from the blockchain, and ends with writing the
next state ciphertext from the blockchain. In the case that
In our extended protocol, we optimistically use the previous
state in the Cache, if available. This results in a performance
improvement when the same enclave eid is used for multiple
sequential queries. This is especially beneficial when there are
transactions accessing the same nodes in the Merkle tree.

Bootstrapping from genesis seems to be necessary whenever
a query is sent to a new enclave (e.g., because the previously-
used enclave host has crashed). In practice, we also define a
policy for checkpoints by storing the entire state (not just the
diff) after every fixed number of intervals. We leave the formal
presentation of this generalization to future work.

c) Batching transactions off-chain: Just as the caching
optimization above removes the need to read from the
blockchain in each query, we can also coalesce the writes
for multiple sequential queries into a single message to the
blockchain. This reduces both the number of network round
trips, as well as the total communication cost. When multiple
queries in a batch write to the same location, only the last
write needs to be stored on the blockchain.

In our protocol we do not define a policy for how many
transactions must go in a batch. Instead, we formally expose
this choice to the adversary. The choice of batching strategy
has no impact on the security guarantees of our formalism.
Each query invocation simply stores the inputs in a buffer,
and the adversary can invoke the commitBatch method at
any time to commit the entire buffer.

Batching is not a panacea. In order to maintain security,
the decrypted outputs must not leave the enclave unless the
updated state ∆stct is committed in the blockchain. Hence a
user cannot receive output from a query until the entire batch is
committed, and so only input-independent queries can appear
in the same batch.

d) Transaction pipelining with optimistic consensus: We
add a step before the compute nodes send the results of a
batch of transactions to the client and the validator committee.
The compute nodes have committed to their results by signing
them. Then, they first send their commitments to a compute
node designated as the leader. If the compute node leader
collects commitments with matching results from all compute
nodes (including itself), then the system can continue without
waiting for the results to be committed in the blockchain. If

there is a discrepancy among the collected commitments, or
if the compute node leader fails, then the system ignores the
optimistic consensus step for this batch of transactions and
waits for the results to be committed in the blockchain.

In the optimistic case, the compute committee is assured
that the network will reach consensus on the same output, and
the nodes start working on the next batch of transactions right
away, thus saving multiple network round trips the compute
committee would have been idle waiting for the validator
nodes to finish their BFT protocol.

e) Coordinating the choice of compute nodes: The Eki-
den protocol leaves it up to the client to decide which compute
node and enclave to query. All of the security guarantees
of FEkiden hold regardless of this choice. As a pragmatic
solution, we propose to have clients defer to centralized coor-
dinators that perform load balancing and random assignment
of compute nodes to tasks, based on reputations and prior
experience. If a task is not completed after some timeout,
the coordinator can signal the client to repeat the query
at another enclave. Randomization can ensure that a host
cannot adaptively choose a particular target task to degrade
service. In this way Ekiden would prevent an adversary from
degrading service for targeted applications. Following other
work, incentives can be aligned by having compute miners
make security deposits before they are assigned to a task.

1) Extended Protocol: The enhanced Ekiden protocol is
specified in Figure 8.

Protfull
Ekiden({Pi}i∈[N])

Clients Pi:

Initialize: (sski, spki)←$ Σ.KGen(1λ), (eski, epki)←$ AE.KGen(1λ)

On input (“create”,Contract) from environment Z:
cid := create(Contract)

assert cid has been stored on Fblockchain

output (“receipt”, cid)

On input (“request”, cid, inp, eid) from environment Z:

obtains pkin
cid from Fblockchain

let inpct := AE.Enc(pkin
cid, inp)

σPi
:= Sig(sski, (cid, inpct))

(∆stct, outpct, σ) := query(cid, inpct, σPi
)

parse σ as (σTEE, hinp, hold, houtp, spki)

assert σ verifies
assert ∃n s.t. hn

inp = H(inpct)

o := claim-output(cid,∆stct, outpct, σ, epki)

// if the previous state has been used by a parallel query

if o = ⊥ then : jump to the beginning of this call

parse o as (outp′ct, σTEE)

assert ΣTEE.Vf(pkTEE, σTEE, outp
′
ct) // pkTEE := Gatt.getpk()

output AE.Dec(eski, outp′ct)

On receive (“commit batch”, cid, eid) from A:
// optimistically commit a batch without providing state

send (eid, “resume”, (“commit batch”, cid,⊥)) to Gatt

if receive (“cache miss”) from Gatt then

send (“read”, cid) to Fblockchain

receive val from Fblockchain

send (eid, “resume”, (“commit batch”, cid, val)) to Gatt

On receive (“read”, cid) from environment Z:
send (“read”, cid) to Fblockchain

receive val from Fblockchain and return val

Compute Node Subroutines (called by Pi):
On input create(Contract):

send (“install”, ̂Contract) to Gatt, wait for eid
send (eid, “resume”, (“create”)) to Gatt

wait for ((Contract, cid, st0, pkin
cid), σTEE) from Gatt

send (“write”, cid, (Contract, cid, st0, pkin
cid)) to Fblockchain

receive (“receipt”, cid) from Fblockchain and return

On input query(cid, inpct, σPi
):

send (“read”, cid) to Fblockchain and wait for stct

send (eid, “resume”, (“request”, cid, inpct, σPi
, stct)) to Gatt

receive ((hinp, hold,∆stct, houtp, spki), σTEE, outpct) from Gatt

let σ := (σTEE, hinp, hold, houtp, spki)

return (∆stct, outpct, σ)

On input claim-output(cid,∆stct, outpct, σ, epki):

send (“write”, cid, (∆stct, σ)) to Fblockchain

if receive (“reject”, cid) from Fblockchain: return ⊥
send (eid, “resume”, (“claim output”,∆stct, outpct, σ, epki)) to Gatt

receive (“output”, outpct, σTEE) from Gattor abort
return (outpct, σTEE)

Enclave program ̂Contract
Local state: Cache := ∅,Batch := ∅

On input (“create”)

cid := H(Contract)

(pkin
cid, sk

in
cid) := keyManager(“input key”)

kstate
cid := keyManager(“state key”)

st0 := SE.Enc(kstate
cid , 0⃗)

Cache[cid] = st0 // cache state locally

return (Contract, cid, st0, pk
in
cid)

On input (“request”, cid, inpct, σPi
, stct) from P:

assert Σ.Vf(spki, σPi
, (cid, inpct))

add (inpct, spki) to Batch[cid]

On input (“commit batch”, cid, inp):

make a local copy of Batch and parse it as
{
(inpct

i, spki)
}
i∈[N]

reset the global batch: Batch = ∅
// retrieve pkin

cid, sk
in
cid, k

state
cid from keyManager as above

inpi := AE.Dec(skin
cid, inpct

i) for i ∈ [N]

if Cache[cid] = ⊥ ∧ inp = ⊥ then :

return (“cache miss”)
if Cache[cid] = ⊥ then :

send (“∈”, cid, inp) to Fblockchain; wait for true or abort

parse inp as st0ct ∥ {∆stnct}n
reconstruct latest state and store it at Cache[cid]

kout
cid := keyManager(“output key”)

let st[0] = Cache[cid]

for i = 1 . . . N :
st[i], outp[i] = Contract(st[i− 1], inpi, pki)

outpct[i] = SE.Enc(kout
cid, outp[i])

Cache[cid] = st[N] // cache the latest state

∆st := diff(st[N], st[0])

hinp :=:= H(inpct[1]) ∥ · · · ∥ H(inpct[N])

hold := H(st[0])

houtp := H(outpct[1]) ∥ · · · ∥ H(outpct[N])

∆stct := SE.Enc(kstate
cid ,∆st)

outpct := outpct[1] ∥ · · · ∥ outpct[N]

send ((hinp, hold,∆stct, houtp, spki), outpct) to all {Pi}i∈[N]

On input (“claim output”,∆stct, outpct, σ, epki):
parse σ as (σTEE, hinp, hold, houtp, spki)

parse houtp as h1
outp ∥ · · · ∥ hn

outp

assert ∃n s.t. hn
outp = H(outpct)

send (“∈”, cid, (∆stct, σ)) to Fblockchain

receive true from Fblockchain

kout
cid := keyManager(“output key”)

outp := SE.Dec(kout
cid, outpct)

return (“output”,AE.Enc(epki, outp)) // reveal the output

Fig. 8. Enhanced Ekiden Protocol. diff(·, ·) is a function that takes in two states and output the difference.

	Introduction
	Background
	Technical Challenges in TEE-blockchain hybrid systems
	Tolerating TEE failures
	Proof of Publication for PoW blockchains
	Key management in TEEs
	Atomic delivery of execution results

	Overview of Ekiden
	Motivation
	Ekiden Overview
	Workflow
	Ekiden Security Goals
	Assumptions and Threat Model

	Building blocks
	Proof of Publication
	Key Management
	Replicated TEEs
	Distributed key generation

	Atomic Delivery

	Protocol Details and Security Proof
	Preliminary and Notation
	Formal Specification of the Protocol
	Security of ProtEkiden
	Mitigating app-level leakage
	Performance Optimizations

	Implementation
	Programming Model
	Applications

	Related Work
	Conclusion
	References
	Appendix
	Supplementary Formalism
	Ideal Blockchain
	Ideal functionality FEkiden
	Contract TEE wrapper

	Proof of Publication
	Proof of Main Theorem
	Ekiden Performance Extensions
	Extended Protocol

