
The Oasis Blockchain Platform
Oasis Protocol Project

June 23, 2020

1 Introduction

The range of applications where blockchain tech-
nology can be applied has been widening. Where
blockchain v1.0 designs (e.g., Bitcoin [35]) provided
consensus for serializing token transfers, blockchain
v2.0 designs (e.g., Ethereum [46]) added support for
generic computation via smart contracts. For next
generation blockchains, one of the main goals is to
enable private computation.
The Oasis Blockchain Platform is a Layer 1 Proof

of Stake (PoS) [30] smart contract platform that pro-
vides scalability, extensibility, and privacy. The main
features of the platform enable efficient verifiable and
confidential smart contract execution. The modular
design of the platform allows the consensus layer to
be easily changed to use a completely different con-
sensus mechanism to benefit from the latest progress
in the space; furthermore, the consensus layer accom-
modates multiple smart contract runtimes simulta-
neously. These independent parallel runtimes, or
“ParaTimes”, can use different verifiable computing
and confidential computing techniques with little or
no changes to the interfaces. Section 3 defines these
components more precisely.
Before the consensus layer accepts an update sub-

mitted by a ParaTime, it first verifies that the update
value, which represents a state change for the source
ParaTime, is correct. This is done using a form of ver-
ifiable computation; currently we use replicated com-
putation in the ParaTime for verifying smart contract
transaction execution results.
Our verifiable computing implementation is called

“discrepancy detection” [48], incorporating an efficient
fast-path optimization that allows us to use smaller
ParaTime execution committees of size F + 1 most of
the time, where F is the number of faulty or Byzantine

The source for this paper is maintained at git@github.
com:oasislabs/paper-mainnet-light-overleaf.git and this
version was built from NOT CHECKED-IN.

nodes. This compares well with traditional Byzantine
Fault Tolerance (BFT) based replicated computation
techniques that require committees of size 3F + 1, or
Ethereum 1.0 which uses a 2F + 1 honest-majority
design. This greatly improves scalability for smart
contracts that run on the Oasis Blockchain Platform,
since the computing cost for a given desired level of se-
curity is reduced. Our modular layered design makes
this possible because it separates smart contract exe-
cution from consensus, and this separation allows the
Oasis Blockchain Platform to reduce the replication
factor for smart contract execution without sacrific-
ing security, separate from the validator replication
in the consensus committee. Note that our architec-
ture does not require the use of discrepancy detection
and ParaTime implementers can choose to use other
verifiable computing techniques for smart contract ex-
ecution. ParaTimes can be implemented, registered,
and operated by anyone, and they can commit arbi-
trary values, e.g., something as simple as document
hashes for timestamping [26], rather than ParaTime
state updates.

ParaTimes may implement other confidential com-
puting techniques such as multiparty computa-
tion (MPC) [13, 7], fully homomorphic encryption
(FHE) [22], zero-knowledge proofs (ZKP) [6, 27], etc.
Our goal is to enable a range of privacy enhancing
technologies so that different ParaTimes can choose
different technologies and make different trade-offs.
The Oasis Blockchain Platform was designed and

implemented in conjunction with a reference Para-
Time implementation by Oasis Labs. Having a work-
ing ParaTime allowed us to exercise the system in-
terfaces, so that the module boundaries were not
designed in vacuo. This ParaTime provides private
computation using Trusted Execution Environments
(TEEs) [32] for efficient, cost-effective confidential
smart contract execution; it also provides verifiable
computing via discrepancy detection. Like for verifi-
ability, our architecture does not require ParaTimes
to provide confidentiality, nor does it require (or pre-

1

git@github.com:oasislabs/paper-mainnet-light-overleaf.git
git@github.com:oasislabs/paper-mainnet-light-overleaf.git

clude) the use of any particular confidential comput-
ing technique. Indeed, a ParaTime that does not use
any confidential computing techniques can easily co-
exist with a TEE-based ParaTime and provide only
a guarantee of verifiable execution.

The modular nature of the architecture also allows
the consensus layer implementation to be updated in-
dependently of the ParaTimes and vice versa. New
ParaTimes can be easily incorporated without any
impact on existing ParaTimes. For example, a private
closed smart contract system for use within an enter-
prise environment can be realized as an independent
ParaTime that operates in parallel with a public, open
smart contract ParaTime.

This paper describes our architecture, the consensus
layer design, and describes how a reference implemen-
tation of a confidential ParaTime fits into the overall
architecture. It describes the interfaces as currently
designed/implemented—they could change as the sys-
tem further evolves. This paper does not describe any
particular blockchain network built using the Oasis
Blockchain Platform. In particular, while this paper
suggests some potential areas in which the platform
might be enhanced or extended in the future, the com-
munity governance of such blockchain networks and
how future engineering changes will be considered are
beyond of scope of this paper.
Next, in Section 2, we discuss the principles used

in our system design. Section 3 describes our system
architecture in more detail. Following this, Section 4
gives a high-level overview on how our discrepancy
detection technique works and discusses the key ideas
behind the approach. Section 5 gives details about our
ParaTime design and in particular discusses the ref-
erence TEE-based private computation runtime that
has been built. Next, Section 6 discusses how key man-
agers fit in with confidential ParaTimes, and presents
some potential future directions for more featureful
key managers. Finally, Section 7 gives some conclud-
ing remarks.
We include appendices that provide more detailed

analysis, which might be useful for readers interested
in the security arguments used in the design. Ap-
pendix A explains discrepancy detection technique in
more detail, compares its probabilistic security model
with that of standard BFT committee selection tech-
niques, and relates its security to resources that must
be spent by the adversary. Appendix B discusses the
security of discrepancy detection under the stronger
assumption that the adversary is non-adaptive, so
must risk losing some stake as penalty for having the

compute nodes that they control return a detected dis-
crepant answer. Following this, Appendix C discusses
the need to check that security checking operations
actually took place.

2 Design Goals and Principles
2.1 Goals
We want to make the Oasis Blockchain Platform
flexible, extensible, scalable, secure, and better fault-
isolated. Here is what we mean:

• flexible. It should be easy to modify system pa-
rameters to accommodate different deployment
scenarios (e.g., constraints on ParaTime nodes).

• extensible. The system should be reasonably easy
to extend by adding new components to imple-
ment different functionality/semantics (e.g., dif-
ferent ParaTimes or different confidential com-
puting techniques).

• scalable. The total transaction throughput of the
system should increase with the total number of
nodes, ideally in a linear fashion, even for complex
transactions. Scalability is a form of efficiency at
scale, since it allows the system to grow without
incurring huge expenses and driving up the per-
transaction costs.

• secure. The system should be able to enforce
security policies that are impossible for earlier
blockchain systems, allowing a greater breadth
of applications. In particular, in addition to the
supporting verifiable computations, the system
also supports the ability to perform those com-
putations in private, using confidential state / in-
puts. Furthermore, our system architecture and
implementation should make design choices in fa-
vor of simplicity when feasible; this makes careful
design reviews and implementation audits more
practical and effective.

• fault-isolated. Fault isolation is a basic compo-
nent of fault tolerance. We want our system to
be fault tolerant both in terms of security fault
isolation, so that a security vulnerability in one
component should not compromise the security of
another component, and in terms of performance
fault isolation, so that performance problems in
one component does not unduly affect the perfor-
mance in the rest of the system.

2

The combination of flexibility and extensibility allows
the development of additional ParaTimes with dif-
ferent security, performance, or usability trade-offs.
In particular, the support for confidential smart con-
tracts and improved isolation properties provides both
developers and users more choices in the types of ap-
plications that can be built using the Oasis Blockchain
Platform.

2.2 Principles
We wanted to follow the principle of deriving the sim-
plest and most flexible design possible, while still meet-
ing our goals. The functional decomposition should
expose simple, orthogonal inter-component interfaces.

Expanding these ideas in our system design resulted
in the following:

• Modular Architecture: We have designed and im-
plemented a clear separation between the consen-
sus layer and an independent ParaTime smart
contract execution layer.

• Simple Consensus Layer: The consensus layer is
kept as simple as possible. The consensus com-
ponent only handles validator committee man-
agement operations such as token balance trans-
fer, staking, delegation, debonding, etc; ParaTime
committee scheduling; and commits of values
from ParaTimes. This helps increase security and
efficiency, since (complex) smart contract execu-
tions are isolated from consensus operations, com-
paring well with Layer 2 solutions.

• Independent ParaTimes: Independent ParaTimes
offer flexibility, since it is easy to incorporate dif-
ferent runtimes for different needs, e.g.:

– Security requirements. Different ParaTimes
can be optimized for confidential smart con-
tracts versus integrity-only smart contracts.

– Performance requirements. The reference
ParaTime implementation offers no ex-
plicit concurrency for smart contract exe-
cution. However, multiple instances can be
run simultaneously, achieving simple con-
currency via explicit separate-world paral-
lelism. Other ParaTimes developed later by
the community can offer greater parallelism
using more advanced techniques.

– Non-technical / external requirements. For
example, enterprises may require that their

Consensus Committee

Consensus Layer

Validator

Validator

Validator

Validator...

...

...

Confidential ParaTime

Compute Node

...Contract

Contract

Contract

Contract...

Key Manager

Compute Node

Non-confidential ParaTime

Compute Node

...Contract

Contract

Contract

Contract...

Compute Node

Figure 1: Oasis Blockchain Platform Architecture

private ParaTimes execute only on a spe-
cific designated set of server nodes, so that
they run on-premise or within particular le-
gal jurisdictions.

If a ParaTime is unable to handle its transaction
load or fails for whatever reason, the impact on
the rest of system is simply that no state updates
will be submitted from that ParaTime to be com-
mitted to the consensus layer. Other ParaTimes
are not affected. A ParaTime cannot submit too
many values or otherwise spam the consensus
layer, since each ParaTime must pay consensus
layer transaction fees. This provides us with en-
capsulation and fault isolation: ParaTimes are
distinct entities and cannot affect nor interfere
with each other.

The explicated partitioning between components
provides a clear verifiable computing interface. This
consensus-ParaTime interface is extensible, though ob-
viously adding interfaces (especially if multiple extant
interfaces can interact/interfere with each other) can
increase complexity and auditing effort. The reference
ParaTime implementation uses discrepancy detection
for verifiable computing (see Section 4), with the de-
tection occurring at the consensus node’s ParaTime
interface. The use of discrepancy detection enables
a lower replication factor in common fast-path exe-
cution, making the verifiable computing implementa-
tion much more efficient and cost effective. Any Para-

3

Time developer can easily extend this implementation
and add other verifiable computing mechanisms such
as Arbitrum [28] or ZKP-based transaction verifica-
tion [27].

3 Architecture
We describe and give more details on the major com-
ponents in this section. The Oasis Blockchain Plat-
form contains these major components that interact
at well-defined interfaces.

3.1 Architecture Overview
The main components are in Figure 1:

• Consensus layer. The consensus layer accepts val-
ues from its clients (the ParaTimes) and writes
these values into the next block in our blockchain.
The consensus layer also includes the necessary
machinery for validator and ParaTime commit-
tee selection, and for handling the consensus-layer
or “native” token operations, which are needed
for its own management. The meaning of the
values generated by a ParaTime is entirely de-
fined by that ParaTime, so a ParaTime could be
built that only supports Bitcoin-like transactions
or even document timestamping [26]. Note that
here we are mainly concerned with ParaTimes
that support smart contract execution and will
not discuss these other uses below.

• ParaTimes. ParaTimes are where smart contract
execution occurs. Each ParaTime defines its own
smart contract execution environment and the se-
mantics for the interfaces it exposes, and chooses
the mechanism and associated parameters (e.g.,
the degree of server replication) used to ver-
ify results of contract execution. All ParaTimes
will support some notion of event sequencing—
typically transactions—since ParaTimes commit
values to the consensus layer. While they are pos-
sible, we do not consider non-transactional, non-
verifiable computing ParaTime designs below. A
ParaTime may include:

– Key managers. Key managers are only
needed for TEE-based confidential Para-
Times, since the TEE-based ParaTime com-
pute nodes store encrypted contract state;
key managers are not needed for FHE-based
confidential ParaTimes or non-confidential
ParaTimes.

– Committee selection pool criteria, e.g., when
the ParaTime uses a rotating set of com-
pute nodes for replicated computation (see
Section 4), what requirements are there for
nodes to qualify beyond simple stake thresh-
olds?

The consensus layer provides only a specific set of
consensus-backed services and no direct support for
confidential computing. These services are (1) native
token operations such as transfer, staking, delegation,
etc; (2) validator committee selection; (3) ParaTime
committee selection; (4) ParaTime results verification;
and (5) commitment of verified ParaTime results to a
blockchain. In particular, this means that native token
account balances and transfers are not confidential.
The native token is used for staking and commitment
processing fees.
Verifiable computing is implemented at the con-

sensus node’s ParaTime interface. The only verifi-
cation mechanism that is currently implemented is
discrepancy detection. It is generic in that multiple
ParaTimes can use it, with a separate instance of
the mechanism for each ParaTime, with ParaTime-
specific interface endpoints. The replicated ParaTime
nodes are where smart contract execution occurs; the
value delivered to the consensus-ParaTime interface
is the Merkle hash of the new ParaTime state that
resulted from contract execution. The discrepancy
detector can either accept a result to pass onto the
blockchain code for consensus processing, or reject re-
sults as unverified, signaling the ParaTime layer to
perform exception, “slow-path” processing. See Sec-
tion 4 for details.
Confidentiality for smart contract execution is im-

plemented solely within ParaTimes. For ParaTimes
that use techniques such as FHE, an observer of the
contract state cannot determine what it is doing un-
less the observer has the cryptographic keys that en-
crypted the input values for the FHE contract. For
ParaTimes that use TEE-based computation, contract
execution occurs within the TEE environment, and
contract state is encrypted before being stored. Be-
cause of this, both the ParaTime compute nodes and
the key manager are jointly responsible for contract
state confidentiality, and mutual authentication via
TEE-based remote attestation is critical. Regardless
of the confidentiality technique used, the value passed
to the consensus layer is a Merkle hash of the en-
crypted ParaTime state, and thus leaks no informa-
tion as long as the state encryption leaks no informa-
tion.

4

The reference confidential ParaTime implementa-
tion uses the TEE-based approach to achieve rea-
sonable performance. Smart contract developers can
choose among the available ParaTimes based on which
of them satisfies their application’s security needs, and
if none suffices, they can propose their own ParaTime
as a ParaTime developer.
Note that ERC-20 [12] style smart contracts run-

ning within ParaTimes can implement their own to-
kens independent of the token used at the consensus
layer. Furthermore, such a smart contract could be de-
veloped to run on a confidential ParaTime; this would
result in a token with confidential token account bal-
ances, transfers, etc.

3.2 Consensus Layer

The consensus layer is a simple BFT / Proof of Stake
blockchain responsible for consensus. It is based on
the Tendermint [10] BFT consensus protocol.

In addition to blockchain management transactions,
each block in the blockchain contains a limited number
of ParaTime value update entries. The contents
of these entries are the focus of the consensus layer:
the clients of the consensus layer—the ParaTimes—
submit contents for these entries, and the production
of blocks extending the blockchain determines the
global serialized execution order for the operations
represented by these values.
Note that the main abstract service provided is

simply a consensus mechanism for the values being
committed. It is possible to replace it with another
consensus mechanism, e.g., Libra HotStuff [5], instead
of Tendermint, with very little impact on the rest of
the system.

The consensus layer handles not only commitment
of ParaTime values and consensus committee man-
agement, but also provides services for ParaTimes:

• native token. The native token is used for staking
both consensus and ParaTime committees, and
for payment for consensus operations.

• committee selection and scheduling. The consen-
sus layer keeps track of virtual time epochs and
handles the committee selection process. .

• verification. The consensus-ParaTime interface is
where the ParaTime-specific verifiable computing
protocol terminates.

3.3 Consensus–ParaTime Interface

Abstractly, the consensus-ParaTime interface is sim-
ple: the replicated consensus nodes each accepts a sub-
mitted value from the ParaTime layer that has under-
gone verifiable computing checks, and the consensus
algorithm decides which of the submitted value(s) to
commit to the blockchain.
Of course, if there are N validator nodes and the

ParaTime is also replicated, say using a compute com-
mittee of C nodes, this could mean that we would
send a total N ·C messages, each containing a signed
value, delivered via point-to-point communications; or
we could use a gossip network [43] to pass C signed
messages to the N validators. Alternatively, we could
require the C ParaTime nodes gather signatures un-
til, say, 2

3 of the ParaTime nodes have signed a single
value, and then to forward that value to all the N
validator nodes. The details of how the verification
mechanism decides on which value to use at each of
the N validators is a detail that belongs within the
verification abstraction.

One way to think of this is to include a verifica-
tion mechanism defined process that is co-located
with each validator process representing the ParaTime
layer as the consensus client. The verification-defined
process handles verification-specific communications
and submits a single value to the validator process
with which it is co-located; thereafter, it is the job
of the validator process to reach consensus with its
peers in the validator committee about which value
to accept onto the blockchain.
Rather than using a separate process, this is im-

plemented as a code module used by validators
that receives messages from senders within the
ParaTime—thus, at the network-communication-level,
a verification-defined messaging interface—and the
consensus layer exposes a stable code interface that
is used with this library. From an architectural view-
point, combining this into a single process enables
better control over communications and scheduling.
From a deployment viewpoint, adding new ParaTimes
will involve consensus-layer managed configuration
changes for their registration, and—especially if a new
verification mechanism is to be used—minor code
changes that the network operators must accept.
We envision that if/when a new ParaTime needs

to use an alternative verifiable computing scheme,
additional libraries (external interfaces) will be added
here.

5

3.4 ParaTime Layer
The ParaTimes are where smart contract execution
occur. The decoupling of execution from consensus al-
lows each component to be optimized for their respec-
tive tasks. In particular, when a ParaTime uses TEEs
for confidentiality, the TEEs also provide protection
for the computation’s integrity which can translate to
requiring a lower replication factor for smart contract
execution than compared with non-TEE ParaTimes.

It is likely that we will have at least one key manager
instance per TEE type and/or per ParaTime. For
ParaTimes that use TEE-based computation a key
manager is needed, because contract execution occurs
within the TEE environment, and contract state is
encrypted before being stored. For ParaTimes based
on homomorphic encryption (FHE) no key manager is
needed, because such ParaTime nodes operate only on
encrypted data, and only the entities that applied the
homomorphic encryption to the inputs could decrypt
the results from the ParaTime computation outputs.
Similarly, an verification-only ParaTime would not
need to have a key manager.
The reference ParaTime implementation handles

confidential smart contracts, the details of which will
be described in another paper [39]. The Oasis commu-
nity can implement additional new ParaTimes in the
future, and/or extend the reference ParaTime imple-
mentation to provide new features. In this ParaTime,
we rely on the TEE security assumptions and thus
include a key manager.

3.5 Key Manager
Key managers are particular to ParaTimes, though
multiple ParaTimes can choose to use the same key
manager code. The key manager is responsible for
maintaining control over the cryptographic keys used
to protect confidential contract state.
The properties that key managers should provide

are:

• Confidentiality. The confidential smart contract
state must remain confidential. Generally, this
means that only authorized, attested ParaTime
compute nodes can access the keys, and implies
that proper cryptographic protection is used for
communications between the key managers and
the ParaTime compute nodes.

• Availability. The keys are needed to execute confi-
dential contracts, and the key managers must pro-
vide enough availability (through replication to

geographically separated nodes in different fault
zones) for the ParaTime. This also implies the
integrity of the key store as well as communica-
tion security, since destruction of the key store or
getting the compute nodes to process contract in-
vocations with a bad key would severely damage
the contract state.

In Section 6 we will discuss the design choices made
in the key manager for the confidential ParaTime ref-
erence implementation in more detail.

4 Discrepancy Detection
Discrepancy detection is the verifiable computing tech-
nique that the Oasis Blockchain Platform uses to ver-
ify ParaTime execution currently. It permits the use
of smaller ParaTime committees than other schemes,
making the system more efficient, especially when the
application is compute heavy compared to consensus.

The key ideas in discrepancy detection are (1) ran-
dom selection of compute nodes from a population
to form a compute committee and (2) accepting the
results only if all committee members agree. A sepa-
rate protocol, which we call “discrepancy resolution” is
used when a discrepancy is detected. One can think of
discrepancy resolution as another security parameter
to discrepancy detection, and that the resolution pro-
tocol is the expensive, “slow path” mechanism used to
correct faults, and the detection protocol is the cheap
“fast path” mechanism used to detect faults.

Here is what discrepancy detection does:

• Results of compute node execution is signed by
the node and sent to the discrepancy detectors
via a gossip network. The detectors are imple-
mented within verification code colocated within
the validator nodes.

• The verification code checks the results. Each
compute node should have signed only one result—
double signing results in slashing. Absent double
signing, the results should be identical, i.e., dis-
crepancy free.

– If the results are discrepancy free, they are
submitted to the validators for consensus
protocol processing and block creation.

– If there is a discrepancy, the results are
marked as disputed and the resolution phase
is started to use the slow-path protocol to
determine the correct results to use. The

6

nodes with disputed results that differ are
penalized an amount that pays for the slow-
path re-execution costs.

An important observation is that except for un-
usual events like hardware failures, ParaTime errors
that result in non-deterministic execution, or an non-
adaptive adversary (see Appendix B), the resolution
mechanism should never be invoked.
The analysis showing that the security properties

is based on calculating the probability of selecting an
all-Byzantine committee, so that discrepancy detec-
tion would fail to detect any errors. The discrepancy
detection security parameters are chosen to drive this
probability as low as needed in order to drive the ad-
versary cost to a level that should be unacceptable to
the attacker.
The key result of this analysis is that the com-

mittee size needed is significantly smaller than that
needed—for the same level of security—as would be
for a conventional BFT scheme. This means that by
using discrepancy detection, the cost in system re-
sources needed to deliver the same level of security is
far smaller, and that our system will be able to scale
better.
Those who are interested in the analysis of the se-

curity of discrepancy detection should refer to Ap-
pendix A.

5 Parallel Runtimes
The ParaTime interface to the consensus layer en-
ables the Oasis Blockchain Platform to run different
ParaTimes. Indeed, multiple ParaTimes can run si-
multaneously, subject to the availability of consensus
layer resources for processing updates. Parallel execu-
tion via ParaTimes can be an effective way of scaling
transaction throughput when no inter-ParaTime co-
ordination is needed.

ParaTimes can commit every transaction to the con-
sensus layer or only commit periodically values that
represent several transactions. In the latter case, sum-
marizing multiple transactions into a single hash value
means that ParaTime transaction throughput can be
decoupled from the block production at the consensus
layer. When a ParaTime hash represents many trans-
actions, those that occur within a ParaTime time-line
may be assigned a sequential order by the ParaTime,
i.e., based on the authenticated data structure used
to derive the summary hash value. However, a trans-
action TA that ran on ParaTime A and a transaction

TB that ran on ParaTime B do not necessarily have
any ordering relationship with each other, e.g., if the
hash summary from each of the ParaTimes for these
two transactions were committed to the same consen-
sus block. Both TA and TB occurred before the block
was added to the blockchain, but we cannot make any
inferences about their relative order.
When two or more ParaTimes share the consen-

sus layer, they can use message passing techniques
for contracts hosted on one ParaTime to communi-
cate with the other, e.g., Inter-Blockchain Commu-
nications protocol (IBC) [18] could be applied. Note
that this adds complexity, since the ACID transaction
properties provided by smart contract execution are
provided at the level of transactions, and message pass-
ing schemes require transaction commitment to send
messages—communicating contracts that want trans-
actional properties will have to implement their own
commitment/rollback mechanisms. It also remains to
be seen whether applications will find the inter-chain
communication overhead acceptable.

5.1 Private Computation Runtime
The reference ParaTime uses TEEs to support effi-
cient execution of confidential smart contracts. This
section discusses at a high level some of the security
issues which are solved by the architectural design,
as well as some general issues that remain to be ad-
dressed. These are issues that must be addressed by
all TEE-based confidential ParaTimes, so they should
be of independent interest.

5.1.1 TEE Security Model

In the TEE model, code can be placed in a TEE-
provided secure execution environment, an enclave,
such that an adversary cannot tamper with its execu-
tion after initialization. Further, enclaves running on
TEE-enabled hosts can prove their identities—their
initial state—to external observers through remote
attestation, which involves the use of an external ser-
vice similar to how certification authorities are used
in many public-key cryptosystems. In the case of the
Intel SGX realization [34], this is the Intel Attesta-
tion Service (IAS) [4]. In the future, support for Data
Center Attestation Primitives (DCAP) [40] could be
added to support remote attestation without the use
of Intel’s IAS servers.

The threats that the abstract TEE model are robust
against include basically everything outside the CPU
chip packaging boundary. Adversaries are allowed

7

to have control of the operating system (and hypervi-
sor, if used)—even the boot ROMs—and could read
and write the contents of DRAM at will while the
CPU is executing. The adversaries are not, however,
allowed access to the CPU’s internal state: register
values, architectural or otherwise; branch prediction
table contents; on-chip cache contents; etc.

5.1.2 TEE Vulnerabilities

The TEE abstraction and TEE implementations
are not (yet) congruent. In particular, we recognize
the need for extensive security reviews in realiza-
tions of the TEE abstraction: Intel’s SGX [34] has
been shown to be vulnerable to a variety of at-
tacks [9, 44, 19, 42, 16] taking advantage of imple-
mentation flaws, and it may take a few more genera-
tions / revisions before the security community is will-
ing to believe that all reasonable “low-hanging fruit”
flaws have been found; AMD’s SEV [29] architecture
has not been subject to a comparable level of review,
though its implementations too have had vulnerabili-
ties [8]; and the Keystone [32] project’s open-source
hardware design has yet to result in any production
chips usable for evaluation.
When a service is implemented on a TEE-enabled

node, it must be internally split into an enclave-hosted
component and a non-enclave, external component.
This is because the enclave component has no persis-
tent storage,1 and I/O is, by necessity, through the
external component. This is true for SEV as well as
SGX, since I/O hardware cannot be implicitly trusted.
TEEs provide per-enclave cryptographic keys that can
be used to ensure confidentiality and authenticity of
data persisted outside the enclave; this allows the en-
clave components to be restarted and continue from
an earlier checkpoint. The lack of trusted persistence,
however, implies that an enclave component is sub-
ject to a state rollback attack: the external environ-
ment can replay old checkpoints, possibly over and
over again across multiple restarts, and the enclave
component will be unable to detect this.

The TEE state rollback problem has various impli-
cations for the applications of TEEs for confidential
computing, which we will discuss next.

1SGX monotonic counters rely on Management Engine (ME)
flash. Security researchers have found ME vulnerabilities and
advise that ME should be disabled where possible. Furthermore,
the monotonic counter values are chip specific, and contract
state should not be tied to a particular CPU that might fail.

5.1.3 State Rollback

While cryptographic protocols can ensure that the
other end of a communication endpoint is live, this
only increases the scope of the number of components
that an adversary would have to rollback—if this num-
ber is small, then the adversary can take advantage
of this problem.

The simplest way to avoid state rollback attacks is
to be stateless.
In our reference ParaTime, compute nodes do not

checkpoint state, and they use external untrusted stor-
age servers for contract state. This ParaTime’s smart
contract model views contract calls as authorizing
state changes from the current consensus contract
state. Contract execution is always given not just the
call parameters and entry point, but also includes the
current consensus contract state via its Merkle tree
hash; the output of a contract call also includes the
resultant contract state hash.

While message replays could cause re-execution, we
ensure that re-execution is either idempotent or has
no useful side-effects:

1. Smart contract execution is deterministic and
idempotent. Confidential contract state is
garbage collected, so replay of contract execu-
tion should not result in a new state being cre-
ated unless it had been created but has already
been garbage collected. There is a potential for
increased load at both storage servers as well as
compute servers, which is a denial of service con-
cern that can be addressed separately.

2. Smart contract call results and generated events
should not be accessible unless the transaction
commits: the values should be encrypted and sub-
ject to atomic delivery [17]. For each transaction,
the compute nodes monitor the consensus layer
post-execution to verify that the transaction is
committed before revealing the corresponding de-
cryption key to decrypt for its results and events.
Since our Byzantine fault tolerance parameters in-
clude power loss and other non-Byzantine faults,
we would be guaranteed that some honest com-
pute node will be available to reveal the results
key.
Atomic delivery is currently not fully supported
in the reference ParaTime. Supporting this fully
will enable deployers of confidential computing
ParaTimes to relax limits on where a confidential
ParaTime compute node may run.

8

5.1.4 Side-Channel Attack Mitigation

There are two main kinds of side channels that can
cause information leakage when a TEE-based Para-
Time is used. The first is persistent smart contract
storage access patterns and execution timing, and the
second is microarchitectural side channels in TEE re-
alizations.
For the former, we believe that confidential smart

contracts which include the memory access side chan-
nel in their threat model should use ORAM-style tech-
niques [41] to obscure their memory access patterns.
Since ORAM techniques thus far are still quite expen-
sive, the reference confidential ParaTime does not in-
clude built-in ORAM support. It should be relatively
simple, however, for a developer to modify the refer-
ence ParaTime to use ORAM techniques or to imple-
ment their own ParaTime that might better integrate
such techniques. In general, we recommend the con-
tract code to implement application-level ORAM or
other data-oblivious techniques directly, rather than
relying on ParaTime-level support; in this case the ref-
erence ParaTime implementation would suffice and no
additional support from a ParaTime would be needed.

Similar to memory access patterns, the time taken
to execute a smart contract call can leak information
about the confidential contract’s state and the con-
tract call parameters. We recommend that confiden-
tial smart contracts which include this side channel in
their threat model to use constant time or side-channel
bandwidth limiting algorithms.
For the latter, there is no purely architectural

way to limit confidential ParaTimes to running on
hosts that adversaries could not access to mount side-
channel attacks. For now, deployers of the reference
confidential ParaTime can restrict its execution to spe-
cific operators who are trusted not to exploit possible
side channels due to concerns about SGX side-channel
vulnerabilities.

In the future, the community may consider estab-
lishing auditing procedures by which a wider base
of SGX-enabled hosts can be utilized, e.g., verifying
that controls are in place so that the SGX-based Para-
Times will never be hosted in a shared environment
where side-channel attacks might be mounted, or ver-
ifying that personnel security controls are in place so
that those who are authorized to access SGX nodes
are vetted and will be unlikely to mount side-channel
attacks using their authorized accesses. Of course,
when Intel eventually releases a version of SGX or
another TEE instantiation is identified that has suf-
ficient side-channel information leak mitigation built

in, it may be possible to safely allow audit-free partic-
ipation, either by opening up participation in deploy-
ments of the reference ParaTime, or by running new
open and decentralized ParaTimes.

5.2 Non-confidential Computation
Runtime

Non-confidential runtimes provide similar guarantees
to those provided by Ethereum in that computation is
verifiable, but there is no encryption of smart contract
state.
A non-confidential ParaTime still enjoys state in-

tegrity due to the use of discrepancy detection and
serialization to the consensus blockchain, and it can
use the same consensus APIs as confidential Para-
Times.

5.3 Smart Contract APIs
ParaTimes provide their own interfaces to the smart
contracts they host. Different ParaTimes can have
their own semantics, but they will typically include
some notion of transaction aborting or committing as
well as some way to access longer-term storage (with
transactional semantics).

The consensus layer is concerned only with consen-
sus, which is used to order the transactions processed
by ParaTimes. ParaTimes are free to provide bind-
ings to smart contract APIs for arbitrary languages,
though the reference ParaTime is initially focused on
supporting smart contracts written in Rust and Solid-
ity.

6 Key Managers
In the ParaTime model, each confidential ParaTime
can use its own key manager. A key manager does
not have to be transaction-aware—it is responsible
only for ensuring that keys needed for a particular
smart contract can be made available to the TEEs
responsible for executing that smart contract. How-
ever, as we will see below, having the key manager be
transaction-aware can yield some security advantages.

6.1 ParaTime Key Manager
The design of the reference ParaTime key manager fa-
vors simplicity, reliability, auditability, and ease of im-
plementation over features, even those focused on se-
curity. Because key managers are matched with Para-

9

Times, a ParaTime developer can decide to use our
reference implementation or to build their own key
manager as needed.

The design is similar in some ways to Google’s cloud
key management system [24], though it takes advan-
tage of TEE features that were unavailable at the
time of that system’s (initial) design. The fundamen-
tal idea is to use key splitting from a master key to
derive additional keys. In the ParaTime key manager,
these are per-contract state storage encryption keys.

6.1.1 Application Splitting

The reference ParaTime key manager is internally
split into enclave and enclave-external components.
The enclave component is trusted to do key manage-
ment, but it is incapable of being a blockchain client
since I/O is handled by the external component and
there is no persistent TEE-side state (rollback protec-
tion). The external component is trusted not to mount
side-channel attacks on the enclave component and
not to perform rollback attacks on the enclave compo-
nent. It is not trusted to do key management; all key
material is persisted outside of the enclave component
using the TEE-provided enclave encryption key. Since
the TEE-provided enclave encryption key is only ac-
cessible from within the TEE, the external component
does not have direct access to the key material.
While the split trust model for the key manager

may seem complex, it is actually well justified:

• The external component is operated by a trusted
entity, but we do not want to assume that no op-
eration errors will occur. For example, to decom-
mission a machine (such as after a hardware fail-
ure), any persistent storage that may have held
unencrypted key material must be carefully de-
stroyed. For magnetic media, this can mean over-
writing the disk blocks enough times so that rem-
nant magnetic domains [23] are undetectable [25],
or very powerful whole-disk degaussers be used
to ensure that all remnant magnetic fields are
undetectable. For flash-based storage such as
SSDs, this essentially means using built-in whole-
drive erasure mechanisms, since wear-leveling al-
gorithms implemented within SSDs make tech-
niques such as overwriting previously written files
fail terribly; unfortunately, the efficacy of built-in
sanitize commands vary [45].

• The enclave component relies on the external
component for all of its I/O. We have to trust

the external component to persist key mate-
rial wrapped by the TEE hardware-protected/-
provided enclave key.2 There is no way to en-
sure that key material is properly updated or
erased, even via probabilistic mechanisms such
as in Vanish [21], if we do not trust the TEE-
external component to handle persistence of en-
crypted key material: instead of only distributing
out key fragments to a global-scale Distributed
Hash Table (DHT), the TEE-external component
can also record the fragments, invalidating the
assumption that stored data will be lost due to
DHT node churn or cleansing of timed-out data.
Being able to update key material in the key man-
ager is a necessary requirement for implementing
contract state re-encryption for backward secrecy
(see Section 6.2.3 below).

6.1.2 Replication

For fault tolerance, ParaTime key managers can be
replicated. All of the security critical parts of the key
manager run in an attested SGX enclave. This TEE-
hosted component relies on the TEE-external compo-
nent for all communications, but using SGX remote
attestation, it can authenticate the identity of key
manager replicas with which it communicates, so key
managers can selectively share the master key only
with other instances of the same enclave. The key
manager also implements access controls to only allow
authorized key manager instances to become an active
replica. This prevents adversaries from mounting side-
channel attacks against the TEE-hosted component
of the key manager on their own machines.

6.2 Potential Future Key Manager
Features

We have considered additional features that could be
incorporated into the current ParaTime key manager
or in key managers for other ParaTimes. Some of these
should be practical to implement—should the engi-
neering complexity vs security trade-off be favorable—
while others will require additional research. These are
only initial ideas for the community to review, discuss,
and decide on whether these or other features should
be developed and adopted, based on data from the

2We could rely on being able to reach replicas when an
instance restarts. However, the TEE must have access to some
authentication secret for replica access control, which would in
turn have to be persisted using the external component.

10

reference ParaTime deployment and feedback from
users.

6.2.1 Access Controls and Rate Limiting

In addition to access controls that restrict where key
manager replicas can run, further access control mech-
anisms could offer defense-in-depth. In particular, as
we mentioned in subsubsection 5.1.2, the possibility of
information leaks from nodes executing confidential
ParaTimes is a concern.
To partially mitigate this risk, further access con-

trols could be added to the ParaTime key manager,
so that state encryption keys for a given confidential
smart contract are released only to compute nodes
scheduled to run that contract, and even then, rate
limited to make restarting nodes to gain statistical
information from side channels less useful. Note that
this requires the key manager to be transaction-aware,
since notions of access control / rate limiting are de-
termined by information from the ParaTime’s trans-
action scheduler.

6.2.2 Proactive Secret Sharing

In order to mitigate the effects of a potential key
manager compromise, we could split secret keys using
secret-sharing techniques [33] so that a compromise
of a sub-threshold number of key managers will not
compromise the keys.
The load on the key managers is primarily gener-

ated during smart contract call set up, since contract
execution cannot proceed until state can be accessed.
While the load on ParaTime confidential compute
nodes will vary depending on how smart contract code
is written, it is likely to be higher than that of the
key managers. Especially if/when platform developers
decide to put in the engineering effort to take advan-
tage of available contract parallelism, we will need
more ParaTime confidential compute nodes than key
managers, and it seems likely that we will be able
to decentralize the control of ParaTime confidential
compute nodes before we can the key managers.
Since the number of key manager replicas needed

should be smaller than the number of confidential
ParaTime compute nodes, we believe the risk of a
confidentiality compromise, whether through a side-
channel attack or not, is likely to be higher via Para-
Time confidential compute nodes than via key man-
agers.

6.2.3 Smart Contract State Re-encryption

Additionally, we have considered periodic rekeying of
confidential smart contract storage to provide back-
ward secrecy.That is, a compromise of the contract
state encryption key used at time t will compromise
the contract’s state at that time, but after a later
rekeying operation, the adversary would not be able
to determine the result of new contract executions.3
While it depends on the length of the rekeying pe-

riod and policies on how much of a contract’s con-
fidential storage should be encrypted, it is likely to
be expensive. If re-encryption is performed by a spe-
cial service separate from the standard ParaTime,
then it will be clear to network-based adversaries that
the contract state did not change from before the re-
encryption and after, so unless a contract call is later
performed which modifies the value associated with
the key, an adversary who has access to the old key
(but not the new) and is able to do traffic analysis will
continue to know the value stored at such locations. If
re-encryption is done as part of normal contract exe-
cution, the amount of state to be re-encrypted (which
can be a security parameter) would have an impact on
overall throughput, since all storage write operations
must complete before the transaction can commit.4 It
would be far simpler to require confidential contracts
that are concerned about this to use ORAM [41] tech-
niques.

7 Conclusion
We have presented an overview of the Oasis
Blockchain Platform’s modular architecture. The
main design goals are flexibility, extensibility, scal-
ability, security and privacy, and improved isolation:
flexibility and extensibility for allowing incremental
engineering investments and migration paths toward
longer-term optimizations and additional scalability
improvements; scalability to be more efficient / cost-
effective and to be able to address higher workloads;
security and privacy for verifiable and confidential
computing; and improved isolation for better fault

3Backward secrecy is a concept more typically used in the
context of encryption protocols, where a key compromise of one
or both of the communicating parties in the present does not
leak information about messages encrypted and exchanged in
the future. This contrasts with protocols that provides forward
secrecy, where a compromise in the present does not compromise
the secrecy of messages sent in the past.

4While it may seem feasible to separate the re-encryptions
that do not change the data value from actual writes, this again
would allow traffic analysis to learn what values did not change.

11

tolerance. The simplicity and economy of design also
aids in engineering feasibility, making in-depth design
reviews and code audits more practical and contribut-
ing to the system’s robustness and security.
In future papers [37] and blog posts [36], we will

give more details about the design of our confidential
ParaTime, data from the initial use of our system and
the conclusions that we draw from that, and provide
some starting points for community discussions on
how the platform can evolve in the future.

References
[1] Abd-El-Malek, M., Ganger, G. R., Goodson,

G. R., Reiter, M. K., and Wylie, J. J. Fault-
scalable Byzantine fault-tolerant services. SIGOPS Oper.
Syst. Rev. 39, 5 (Oct. 2005), 59–74.

[2] Abraham, I. , Chan, T. H., Dolev, D., Nayak,
K., Pass, R., Ren, L., and Shi, E. Communica-
tion complexity of byzantine agreement, revisited. In Pro-
ceedings of the 2019 ACM Symposium on Principles of
Distributed Computing (2019), pp. 317–326.

[3] Aiyer, A. S., Alvisi , L., Clement, A., Dahlin,
M., Martin, J.-P., and Porth, C. BAR fault toler-
ance for cooperative services. In ACM SIGOPS operating
systems review (2005), vol. 39, ACM, pp. 45–58.

[4] Anati, I . , Gueron, S., Johnson, S., and Scar-
lata, V. Innovative technology for cpu based attestation
and sealing. In Proceedings of the 2nd international work-
shop on hardware and architectural support for security
and privacy (2013), vol. 13, ACM New York, NY, USA,
p. 7.

[5] Baudet, M., Ching, A., Chursin, A., Danezis,
G., Garillot, F., Li , Z., Malkhi, D., Naor, O.,
Perelman, D., and Sonnino, A. State machine
replication in the libra blockchain, 2019.

[6] Ben-Sasson, E., Chiesa, A., Genkin, D.,
Tromer, E., and Virza, M. Snarks for c: Verifying
program executions succinctly and in zero knowledge.
In Annual cryptology conference (2013), Springer,
pp. 90–108.

[7] Benhamouda, F., Halevi, S. , and Halevi, T.
Supporting private data on hyperledger fabric with secure
multiparty computation. IBM Journal of Research and
Development 63, 2/3 (2019), 3–1.

[8] Bhuren, R., Werling, C., and Seifert, J.-P.
Insecure until proven updated: Analyzing AMD SEV’s
remote attestation. arXiv preprint arXiv:1908.11680v2
(2019).

[9] Brasser, F., Müller, U., Dmitrienko, A., Kos-
tiainen, K., Capkun, S., and Sadeghi, A.-R.
Software grand exposure: SGX cache attacks are practi-
cal. In 11th USENIX Workshop on Offensive Technologies
(WOOT 17) (2017).

[10] Buchman, E., Kwon, J., and Milosevic, Z. The
latest gossip on BFT consensus. https://github.com/
tendermint/spec/releases/download/v0.6/paper.pdf.

[11] Buterin, V. Slasher: A punitive proof-of-stake
algorithm. https://blog.ethereum.org/2014/01/15/
slasher-a-punitive-proof-of-stake-algorithm/.

[12] Buterin, V. ERC-20 token standard. https://github.
com/ethereum/EIPs/blob/master/EIPS/eip-20.md, Nov.
2015.

[13] Canetti, R., Feige, U., Goldreich, O., and
Naor, M. Adaptively secure multi-party computation.
In Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing (1996), pp. 639–648.

[14] Carter, J., and N. Wegman, M. Universal classes
of hash functions. Journal of Computer and System Sci-
ences 18 (Apr. 1979), 143–154.

[15] Castro, M., and Liskov, B. Practical Byzantine
fault tolerance and proactive recovery. ACM Trans. Com-
put. Syst. 20, 4 (Nov. 2002), 398–461.

[16] Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin,
Z., and Lai, T. H. SgxPectre: Stealing Intel secrets
from SGX enclaves via speculative execution. In 2019
IEEE European Symposium on Security and Privacy (Eu-
roS&P) (2019), IEEE, pp. 142–157.

[17] Cheng, R., Zhang, F., Kos, J. , He, W., Hynes,
N., Johnson, N., Juels, A., Miller, A., and
Song, D. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts.
In Proceedings of the 4th IEEE European Symposium on
Security and Privacy (2019).

[18] Cosmos IBC Working Group. https://github.
com/cosmos/ics, 2020.

[19] Dall, F., De Micheli, G., Eisenbarth, T.,
Genkin, D., Heninger, N., Moghimi, A., and
Yarom, Y. CacheQuote: Efficiently recovering long-term
secrets of SGX EPID via cache attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems
(2018), 171–191.

[20] Dean, J. , and Ghemawat, S. MapReduce: Simpli-
fied data processing on large clusters. Commun. ACM 51,
1 (Jan. 2008), 107–113.

[21] Geambasu, R., Kohno, T., Levy, A. A., and
Levy, H. M. Vanish: Increasing data privacy with self-
destructing data. In USENIX Security Symposium (2009),
vol. 316.

[22] Gentry, C. Fully homomorphic encryption using ideal
lattices. In Proceedings of the forty-first annual ACM
symposium on Theory of computing (2009), pp. 169–178.

[23] Gomez, R. D., Adly, A. A., Mayergoyz, I. , and
Burke, E. R. Magnetic force scanning tunneling mi-
croscope imaging of overwritten data. Magnetics, IEEE
Transactions on 28 (10 1992), 3141 – 3143.

[24] Google. Encryption at rest in Google Cloud
Platform, key management. https://cloud.
google.com/security/encryption-at-rest/default-
encryption#key_management, 2017.

[25] Gutmann, P. Secure deletion of data from magnetic
and solid-state memory.

[26] Haber, S., and Stornetta, W. S. How to time-
stamp a digital document. In Conference on the Theory
and Application of Cryptography (1990), Springer, pp. 437–
455.

12

https://github.com/tendermint/spec/releases/download/v0.6/paper.pdf
https://github.com/tendermint/spec/releases/download/v0.6/paper.pdf
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/cosmos/ics
https://github.com/cosmos/ics
https://cloud.google.com/security/encryption-at-rest/default-encryption#key_management
https://cloud.google.com/security/encryption-at-rest/default-encryption#key_management
https://cloud.google.com/security/encryption-at-rest/default-encryption#key_management

[27] Hopwood, D., Bowe, S., Hornby, T., and
Wilcox, N. Zcash protocol specification. GitHub: San
Francisco, CA, USA (2016).

[28] Kalodner, H., Goldfeder, S., Chen, X., Wein-
berg, S. M., and Felten, E. W. Arbitrum: Scal-
able, private smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18) (2018), pp. 1353–1370.

[29] Kaplan, D., Powell, J. , and Woller, T. Amd
memory encryption. White paper (2016).

[30] King, S., and Nadal, S. PPCoin: Peer-to-peer
crypto-currency with proof-of-stake. https://peercoin.
net/whitepapers/peercoin-paper.pdf.

[31] Lamport, L., Shostak, R., and Pease, M. The
Byzantine generals problem. ACM Trans. Program. Lang.
Syst. 4, 3 (July 1982), 382–401.

[32] Lee, D., Kohlbrenner, D., Shinde, S., Song,
D., and Asanović, K. Keystone: A framework for ar-
chitecting TEEs. arXiv preprint arXiv:1907.10119 (2019).

[33] Maram, S. K. D., Zhang, F., Wang, L., Low,
A., Zhang, Y., Juels, A., and Song, D. X.
CHURP: Dynamic-committee proactive secret sharing.
IACR Cryptology ePrint Archive 2019 (2019), 17.

[34] McKeen, F., Alexandrovich, I. , Berenzon,
A., Rozas, C. V., Shafi, H., Shanbhogue, V.,
and Savagaonkar, U. R. Innovative instructions and
software model for isolated execution. Hardware and Ar-
chitectural Support for Security and Privacy 10, 1 (2013).

[35] Nakamoto, S., and Bitcoin, A. A peer-to-peer
electronic cash system. Bitcoin.–URL: https://bitcoin.
org/bitcoin. pdf (2008).

[36] Oasis Foundation. Oasis foundation blog. https:
//medium.com/oasis-protocol-project.

[37] Oasis Foundation. Oasis foundation research
papers repository. https://oasisprotocol.org/
researchpapers.

[38] Oasis Team. The autonomous Byzan-
tine soldiers fallacy. Oasis Team Blog (In
preparation) https://www.oasislabs.com/blog
Draft at https://docs.google.com/document/d/
14g1PmflraoMCqN8WsHxTaOo1lQg3Ng59xm3Ap8ggDec,
2020.

[39] Oasis Team. Oasis mainnet phase 2: Confidential para-
time (draft). In preparation, 2020.

[40] Scarlata, V., Johnson, S., Beaney, J., and
Zmijewski, P. Supporting third party attestation for
Intel® SGX with Intel® data center attestation primitives.
White Paper .

[41] Stefanov, E., Shi, E., and Song, D. Towards
practical oblivious ram. In Proceedings of the NDSS Sym-
posium 2012 (2012).

[42] Van Bulck, J. , Minkin, M., Weisse, O.,
Genkin, D., Kasikci, B., Piessens, F., Silber-
stein, M., Wenisch, T. F., Yarom, Y., and
Strackx, R. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution.
In 27th USENIX Security Symposium (USENIX Security
18) (2018), pp. 991–1008.

[43] Vyzovitis, D., and Psaras, Y. Gossipsub: A se-
cure pubsub protocol for unstructured, decentralised p2p
overlays.

[44] Wang, W., Chen, G., Pan, X., Zhang, Y.,
Wang, X., Bindschaedler, V., Tang, H., and
Gunter, C. A. Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in SGX. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (2017), ACM,
pp. 2421–2434.

[45] Wei, M. Y. C., Grupp, L. M., Spada, F. E., and
Swanson, S. Reliably erasing data from flash-based
solid state drives. In FAST (2011), vol. 11, pp. 8–8.

[46] Wood, G., et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper 151, 2014 (2014), 1–32.

[47] Yee, B. Stake-weighted or flat voting power? In prepa-
ration, 2020.

[48] Yee, B., Kos, J. , Cheng, R., Angel, Y., Berčič,
J. , Bukošek, A., Gilbert, P., He, W., Janež,
T., Jekovec, M., Jung, E., Scott, W., Us, P.,
and Song, D. Nimble: A new approach to scala-
bility. https://www.oasisprotocol.org/researchpapers,
Oct. 2019.

[49] Zerodium. How to sell your 0day exploit to ZERODIUM.
https://www.zerodium.com/program, Nov. 2019.

A Discrepancy Detection

A.1 Overview
Standard consensus protocols use N replicated com-
pute nodes and converge to a consensus value if there
are more than ∼ 2N

3 honest nodes. For verifiable com-
putation, each compute node should have a single re-
sult; computation results are signed, and when double-
signing (or “equivocation”) is detected, it results in
“slashing”, i.e., a kind of bond forfeiture as punish-
ment, similar to Ethereum’s Slasher scheme [11]. In
such schemes, if a compute node gives a “bad” answer
that differs from the super-majority answer, it is es-
sentially ignored. However, we can take advantage of
the requirement that the computation is supposed to
be identical (e.g., deterministic computation): we can
treat any differences in output values as a sign that
there was an error, without determining which of the
two (or more) values are correct.
This is discrepancy detection. We detect but do

not correct errors, using discrepancy detection. After
a discrepancy is detected, we can use a number of
methods to do conflict resolution to determine the
correct result.

Discrepancy detection is an inexpensive, “fast path”
optimization. When a discrepancy in the results
from different compute nodes is detected, we sound
an alarm and use a fallback method—a “slow path”

13

https://peercoin.net/whitepapers/peercoin-paper.pdf
https://peercoin.net/whitepapers/peercoin-paper.pdf
https://medium.com/oasis-protocol-project
https://medium.com/oasis-protocol-project
https://oasisprotocol.org/researchpapers
https://oasisprotocol.org/researchpapers
https://www.oasislabs.com/blog
https://docs.google.com/document/d/14g1PmflraoMCqN8WsHxTaOo1lQg3Ng59xm3Ap8ggDec
https://docs.google.com/document/d/14g1PmflraoMCqN8WsHxTaOo1lQg3Ng59xm3Ap8ggDec
https://www.oasisprotocol.org/researchpapers
https://www.zerodium.com/program

(which can be more expensive, such as high replica-
tion factor standard BFT-based computation)—to de-
termine which of the results is correct and to move
forward (a.k.a., conflict resolution). Those nodes that
turned in incorrect results can be slashed or have their
rewards withheld as a disincentive.
In the following, we will go over some background

and argue for the security of the approach at con-
ceptual level. Those who are familiar with security
background may skip forward to subsection A.2.

A.1.1 Adversarial Work Factor

In security and cryptography, typically designs have
security parameters that are “free parameters”, the
values of which can be arbitrarily set. These are called
security parameters because their values determine
how much resources an adversary have to expend5

to achieve a certain probability of breaking the sys-
tem. Being free parameters, they allow system imple-
menters make worst-case estimates about how much
resources an adversary might have available, and to
choose large enough parameter values such that actu-
ally compromising the system would be infeasible.
The performance of security and cryptography

schemes are evaluated based on the gap between how
much additional work the defenders might do versus
how much additional work the adversary must do in
response to overcome the defense. A large gap makes
security scaling effective: we can improve security by
having the system (or users) do just a little more work
in order to force the adversary to have to do a lot more
work.

A.1.2 Security of Byzantine Fault Tolerant
Protocols

In standard Byzantine fault tolerance (BFT)
schemes [31, 1, 15], the security is “absolute” in the
sense that it is logically impossible for consensus not
to be reached as long as the number of Byzantine
nodes does not exceed the respective thresholds and
message forgery is impossible. In other words, the
proofs rely only on logic and not on computational
complexity assumptions. In practice, of course, protec-
tion against message forgery relies on cryptographic
signatures, and thus computational complexity limits
rears its ugly head. To properly ensure that security

5This is usually measured in the number of instructions or
the number of logic gate operations. Such a value can later be
translated into adversary cost measured in dollars based on the
cost of computation.

can be achieved, we need to ensure (1) that the key
length chosen for the cryptographic signature scheme
used is long enough and (2) that the committee size
is large enough.

Let us unpack what this means.
Generally, the use of cryptography in distributed

systems is straightforward, at least in principle; sys-
tems designers can readily incorporate recommenda-
tions from cryptographers. Commonly-used security
parameters are chosen so that any data being pro-
tected are expected remain secure for many decades
given projected advances in hardware cost/perfor-
mance and in cryptanalytic techniques.
Committee size determination, however, is less

straightforward. In order for a standard BFT pro-
tocol to succeed, we must pick a committee size N
such that N ≥ 3F + 1 where F is the maximum num-
ber of Byzantine nodes. How do we know what is a
reasonable bound for F from which we would derive
N? And thinking in terms of adversary work versus
defender work, the incremental cost for the attacker
in compromising each additional node (increasing F
by 1) is just O(1) (though this is an oversimplifica-
tion [38, 47]); the communication complexity of the
BFT protocols is f(N) ∈ O(N2) [2], so the incremen-
tal cost for the defender is ∂f

∂F ∈ O(F), This contrasts
poorly with cryptographic approaches where there
is an exponential relationship between defender and
attacker costs, which means that we are strongly moti-
vated to get as accurate an estimate for F as possible,
because the defense overhead is so high. Of course,
every BFT system has to do this, so this is nothing
new.
The estimate for what is a realistic value for F is

inherently imprecise and based on imperfect informa-
tion. We can only make statistical, probabilistic infer-
ence about the existence (and impact) of as-yet-to-be
discovered bugs in the system based on historical data
on bugs and their severity, perhaps based on similar
but better studied systems.

Estimating the cost to compromise F (vs F + 1 for
the incremental cost) systems is complex. For example,
an exploit based on a zero-day remote-execution vul-
nerability in core infrastructure components such as
the Linux kernel would be a “common mode” failure in
that an adversary who develops or purchases [49] it is
likely to be able to compromise almost all computers
used to operate consensus committee member nodes,
irrespective on the entities operating them. The cost
of developing or acquiring such a vulnerability and
building tools to take advantage of it is expected to

14

be high (non-recurring engineering cost). The cost of
applying the knowledge or running the tools to ex-
ploit systems, on a per target basis, is much lower in
comparison.

In contrast, selecting an individual within an entity
/ organization operating consensus nodes who has
authorized root access to nodes and setting up that
target for blackmail (with some probability of success)
might be less costly, but would result in compromise of
only a single entity’s nodes. This is similarly imprecise:
until tested, we cannot know whether any particular
individual might succumb to temptation that could
lead to blackmail.

A.1.3 Probabilistic Committee Security

In the Oasis Blockchain Platform, we accept the possi-
bility that a committee could cause system-wide fail-
ures if the probability can be driven arbitrarily low
with comparatively little overhead. This is, in a sense,
a departure from standard BFT schemes, but given
that message forgery protection is probabilistic (e.g.,
the adversary can guess the cryptographic keys used),
it is not a drastic one.
Instead of an absolute assumption that there are

at most F Byzantine nodes in our consensus commit-
tee, we make a more probabilistic assumption, e.g.,
that each node has some probability f of being (or
becoming) Byzantine, or treat F as a random variable.
Given this probabilistic view, can we take advantage
of the separation of computation from consensus? It
turns out we can.

Often executing a smart contract involves relatively
expensive computation compared with consensus: ide-
ally, we want to avoid replicating that computation
N = 3F + 1 times, even though we have to have
N nodes for consensus. Our goal is to form a com-
pute committee consisting of C nodes, with C < N ,
while ensuring that the cost to compromise the sys-
tem would be unacceptably high for the adversary.
The compute nodes will be drawn from a pool of eli-
gible nodes. Note that validators and compute nodes
are not necessarily drawn from the same pool, so the
number of Byzantine nodes (or probability of being
Byzantine) can differ.
Under these assumptions, we can form compute

committees and calculate the probability that the re-
sultant committee would fail when discrepancy detec-
tion is applied. By choosing a large enough committee
size, we can drive the failure probability arbitrarily
low. And as it turns out, for a network based on dis-
crepancy detection to remain uncompromised for cen-

turies, the committee size needed is smaller than the
size required when using standard BFT techniques.
This is the crux of the security efficiency argument.

Sampling Compute Committee Members We
assume that the system can randomly pick C commit-
tee members from a pool in a way that the adversary
cannot influence, and we further assume that the ad-
versary is rational and will not attempt to subvert the
system unless they can do so undetected, i.e., when
the entire committee consists of Byzantine nodes.
This means that a detected discrepancy should

never happen, at least for intentionally injected faults
or attacks.

This does not mean discrepancy detection is useless.
What it means is that we can compute the expected
number of committee selections needed until an all-
Byzantine committee is selected as a function of the
probability f of an individual node being Byzantine,
and the committee size C. Once we have this, we
use worst case estimates for f and choose C so that
the expected amount of time that the adversary will
have to wait for a fully-Byzantine committee to be
randomly chosen to exceed all reasonable levels of
patience.

The probability that we have a bad committee—one
for which all C members are Byzantine and thus dis-
crepancy detection will fail—is straightforward when
the pool of candidate compute nodes is large so that
we can approximate it as sampling with replacement
and can use the binomial distribution: fC . If we
want the single committee selection failure probabil-
ity to be below some threshold P , we need only set
C > logf (P).
In subsection A.2, we also examine the case of

smaller pools of candidate compute nodes, for which
the hypergeometric distribution must be used.

How Unlikely is Unlikely Enough? What is an
acceptable value for C and other security parameters?
We need to relate C to a resource—time, money, etc—
that the adversary must consume in attacking the
system.
In our case, the committee selection rate and the

failure probability together determines the expected
time between committee selections where a bad—all
Byzantine—committee is selected. That is, the prob-
ability determines the expected number of committee
selections between failures, and combining that with
the selection rate determines the expected time be-
tween failures.

15

The high-level security argument for discrepancy
detection is this: we can choose the discrepancy de-
tection security parameters so that the expected time
between failures is no shorter than some minimum
amount of time that we choose, even when using pes-
simistic estimates on other parameters. The next sec-
tion goes into the details for how this is computed.

A.2 Security Analysis
In the reference ParaTime, we use a compute com-
mittee size of C, noting that even a single honest
worker will create a discrepancy in the transaction
result, and the verifying consensus node will trigger
a “slow path” re-execution to reveal which execution
committee members were corrupt.
We assume that an adversary can corrupt some

fraction f of all available compute nodes. From this,
we derive the probability P that a committee of size
C will have all C members chosen from the f fraction.
By controlling C, we can drive this probability to be
as low as needed.
Re-execution uses an honest majority committee,

where the committee size Chm is chosen such that the
probability P ′ that dChm

2 e or more might be chosen
from the f fraction of all compute nodes is much
lower than P above. The exact slow-path mechanism
should be thought of as a parameter to discrepancy
detection, and while honest majority is what we have
implemented in the reference ParaTime, ParaTime
developers can choose a different slow path verification
scheme.

Next, we discuss the resource model and then derive
the cost that an adversary has to incur to compromise
discrepancy detection committees.

A.2.1 Adversary Costs

Like all security arguments, we show that it is infeasi-
ble for an attacker to succeed. The general approach
is to provide estimates for how many resources an
adversary must expend, relative to some security pa-
rameter, in order to successfully mount an attack; if
the rate of growth of the resource function is high
(e.g., exponential), then we should be able to choose
security parameter values to make this infeasible.

For integrity protection, the security analysis is sim-
pler and more straightforward. The Oasis Blockchain
Platform uses Proof of Stake to prevent adversaries
from overwhelming the system by directly paying to
run and thus control too many validators. We use a
variation of “slashing” similar to Ethereum’s Slasher

scheme [11] and employ stake as a performance bond
against bad behavior such as double signing.

For the compute committee, in contrast, the exact
details of whether (or how) to require a performance
bond or to slash misbehaving compute nodes is up to
the incentive design for the ParaTime. In the refer-
ence ParaTime, in order to register a compute node
to participate in a compute committee, the operator
must post a performance bond, and, if problems are
discovered, the node operator loses their performance
bond. These performance bonds offset the cost to the
system to recover from the problem (slow-path pro-
cessing cost) and serves as disincentive to cause denial
of service or performance degradation problems. The
amount of the performance bond in excess of the cost
offset is a security parameter.
We noted above that a rational adversary whose

goal is attack verifiable computing would not mount
their attack unless they had full control of the com-
pute committee. Because the Oasis Blockchain Plat-
form controls how frequently committee formation oc-
curs, the rate of choosing committee members and its
size, C, are security parameters. The two determines
the expected amount of time that the adversary must
wait—assuming secure randomness—before a “favor-
able” committee composition will occur.
Smart contract authors can weigh the importance

of integrity and the expected time to a bad committee
in order to appropriately set minimum stake amounts
and minimum committee sizes to make malicious be-
havior economically disadvantageous. Next, we exam-
ine how to model the effect of a ParaTime’s committee
size on the security of the contracts executing on that
ParaTime.

A.2.2 Adaptive Adversary

The rational adversary behavior is to wait until they
definitely control all members of the committee, or
to ensure that the slow path verification step can be
compromised. We assume that we have chosen the
security parameters so that the expected cost of com-
promising the slow path consensus is higher than that
for discrepancy detection, and will focus only on the
cost of compromising the discrepancy detection com-
mittee.
A key observation is that if the adversary only

acts after it has control of the committee, there is no
punishment. Therefore, the risk of having their stake
slashed is not a significant deterrent to the adversary.6

6The cost of the stake needed to operate nodes is not a deter-

16

Instead of analyzing how much expected stake loss is
incurred by the adversary, we focus on another re-
source, the expected amount of time the adversary
needs to wait before the compromise will succeed.
Here, we assume that the rate of committee selection
is not under the control of the adversary, so that we
can use the expected number of committee selections
until the adversary wins to determine the expected
amount of time needed to win.
When the number of candidate compute nodes is

very large, the estimates are easier. Given a commit-
tee size of C, the probability that a given commit-
tee is composed completely of compromised nodes is
about fC . The adversary has to wait for an expected
W = f−C selections to be able to control a com-
promised committee, assuming that the committee
selection process is random and fair, at which point
the adversary has won. We want this to be (much)
larger than the maximum number of committees used
in the lifetime of the blockchain network, N , so we
require C to satisfy:

C > − logf (N) (1)

Plugging in f = 1
2 as the fraction of compromised

nodes7 and using a (worst case) rate of 32,000 com-
mittee selections per hour and a network lifetime of
1,000 years into Eqn 1 to obtain N ≈ 2.8 · 1011, we
get C > 38. If we used a smaller value, e.g., f = 1

3 ,
then we need C > 23.9.

The computation for the expected number of com-
mittee selections before the adaptive adversary will
win using the hypergeometric distribution is similar.
Suppose we (conceptually) allowed the contract to
run forever. Then the expected number of committee
selections needed to get a compromised committee is
W = (T

C)
(B

C) . We need to pick C, given T and what we
believe to be a worst case value for B, so that the ex-
pected number of committee selections will be (much)
larger than the desired maximum committee selection
of N .
With B = 500 and T = 1,000, we need to have

C ≥ 38 to obtain

W ' 5.7 · 1011 > N

rent. We assume that there is interest to be paid for borrowing
the funds for stake, but this should be more than offset by earn-
ings, since operating nodes should be a profitable endeavor.

7This fraction is too large for honest majority, let alone BFT
schemes: using such a pool would often yield a bad committee;
instead, we would have to use all nodes when f = 1

2 − ε instead
of sampling.

At C = 38, we will keep the adversary waiting for
an expected additional 1,034 years after the network
lifetime of 1,000 has expired.
Using a smaller number of Byzantine nodes, B =

333 out of T = 1,000, a choice of C = 24 results in a
safety margin of more than 825 additional years after
the contract expires.
Note that interestingly, for B = 33 and T = 100,

a choice of C ≥ 20 suffices. At C = 20, we get 2,333
additional years of safety margin. This intuition for
why a smaller committee is needed than the B = 333,
T = 1,000 case is as follows: if the committee starts
filling up with Byzantine worker nodes, the remain-
ing pool becomes depleted of Byzantine workers, so
getting the last few open committee slots filled with
Byzantine workers is harder/less likely.

A.2.3 Tolerating Slow Workers

As observed in MapReduce [20] and many other dis-
tributed systems, often one or a few stragglers are
responsible for causing a computation to slow dramat-
ically. With straightforward discrepancy detection, we
must wait for all C committee members to finish be-
fore we can decide whether to proceed with a single
consensus answer, or to fall back to the slow path
computation and select a (larger) committee for re-
execution.
While the performance bond is supposed to incen-

tivize node operators to ensure that their workers are
sufficiently well provisioned with hardware resources,
including network bandwidth and denial-of-service
protection, so that downed nodes or stragglers should
be rare, such mechanisms do not guarantee that there
will be no stragglers. We can modify the discrep-
ancy detection scheme to tolerate a small number
of downed nodes or stragglers (d) using the following
idea: we declare consensus is reached when a timeout
occurs and at least C−d nodes have reported their re-
sults. Stragglers can be honest nodes that are delayed
by external influence of Byzantine actors. This means
that a Byzantine actor who controls C − d nodes of
a committee has won: the Byzantine actor will cause
messages from the d nodes to be dropped or delayed,
and observers will see that these are stragglers, and
that the protocol was followed correctly in arriving at
the result reported by the C − d Byzantine nodes.

This changes the game parameters, but its essence
remains the same: we choose C to be large enough so
that the probability that C − k nodes will be chosen
from the B subset of the T nodes is sufficiently small.

17

The probability of winning a single committee selec-
tion is s =

∑d
k=0

(
B

C−k

)(
T−B

k

)
/
(

T
C

)
. Suppose we used

N ≈ 2.8 · 1011, B = 500, T = 1,000 as before, and
want to allow d = 1, which is more than 2.5% of the
result for zero stragglers, then we need to pick C ≥ 43
to obtain

W ' 4.7 · 1011 > N

At C = 43, we will keep the adversary waiting an
additional 680 years.
Using a smaller number of Byzantine nodes, B =

333 out of T = 1,000, a choice of C = 28 results in a
safety margin of more than 1,967 additional years.

A.2.4 Safety Margins

In addition to using the expected number of commit-
tee selections to help choose security parameters, it is
useful to look at the variance, since a large variance
would compel contract users to require a larger com-
mittee size to reduce the likelihood of compromise.
The variance for winning a single committee is

σ2
1 = C

(
B

T

)(
T −B
T

)(
T − C
T − 1

)
and since the committee selections are independent
events, the variance for the N iteration selection game
is just

σ2
N = NC

(
B

T

)(
T −B
T

)(
T − C
T − 1

)
For the B = 500, T = 1,000 case where we picked

C = 38, the variance is σ2
N ≈ 2.5·1012, so the standard

deviation is σN ≈ 1.6 ·106. This is a little more than 2
days of committee selections, so years of extra margin
of expected committee selections is plenty.
For the B = 333, T = 1,000 case where we picked

C = 24, the standard deviation is σN ≈ 1.2·106, which
translates to about 1.57 days of committee selections.

B Non-Adaptive Adversary
Here, we assume that the adversary is non-adaptive.
That is, the number of committee members or their
identities might be public, but the adversary does not
(or cannot) take advantage of the information, i.e., in
real-time determine if they control an entire commit-
tee. While this may not be true in general, this is an
interesting design point and not revealing the com-
mittee size or the identities of committee members is
something that we may explore further. There would

be additional overhead associated with this: an overlay
routing scheme would be needed to make identifying
other committee members difficult.

Being non-adaptive, the adversary’s behavior is to
have their compromised compute nodes always return
the answer that the adversary wants, rather than the
correct answer. Once the adversary succeeds, however,
the adversary de-registers all of its nodes and quits.
Let 0 ≤ f < 1 be the fraction controlled by the

adversary. Given a committee size of C, the probabil-
ity that a given committee is composed completely
of compromised nodes—and thus the wrong answer
would be undetected—is about s = fC , assuming the
total number of nodes to choose from is very large, or
s =

(
B
C

)
/
(

T
C

)
using the hypergeometric distribution,

where B is the number of Byzantine compute nodes
and T is the total number of nodes.
Let G be the gain that the adversary achieves by

successfully corrupting the committee’s contract exe-
cution, and let S represent that stake that is forfeited
by the adversary when a discrepancy is detected. If
the expected cost in forfeiture for a successful attack is
greater than the expected gain, then it is economically
infeasible for the adversary to mount attacks.

Contract authors can pick the least acceptable com-
mittee size C and the least stake to be forfeited S
when discrepancies are detected based on their secu-
rity requirements.8 Suppose the total number of com-
mittees chosen to process a contract over its lifetime
is N .

The probability of successfully attacking a commit-
tee at least once when at most N committees are cho-
sen is given by Pr(G) = 1− (1− s)N since (1− s)N

is the probability of being detected in all of the com-
mittees. Setting a = (1 − s), we write the expected
gain as E(G) = G(1− aN).
The expected forfeiture (slashed) amount is given

by

E(S) =
N∑

k=1
ak−1

C−1∑
j=0

(
B
j

)(
T−B
C−j

)(
T
C

) · jS (2)

Let S′ =
∑C−1

j=0
(B

j)(T −B
C−j)

(T
C) · j. Since S′ is independent

8To avoid scheduling complexity, the system only provides
a few tiers of committee sizes and stake values.

18

of k, we can write:

E(S) =
N∑

k=1
ak−1SS′ (3)

= SS′
1− aN

1− a (4)

The contract author can ensure

E(S) > E(G)

SS′
1− aN

1− a > (1− aN)G (5)

S >
1− a
S′

G (6)

Suppose B = 500 and T = 1,000. If the value to the
attacker of a successful attack is G = $100,000,000, a
choice of C = 19 yields a forfeiture lower bound of
S = $20.077, a very modest value.
Note that Eqn 6 is independent of N . This makes

sense, since if after one committee selection the adver-
sary has not “won” yet, then the state of the game is
the same as when we started: the expected gain and
expected forfeiture should be the same as before.

C Verifying Verification
Discrepancy detection allows us to verify that Para-
Time compute nodes performed the same required
computation to obtain the output. An important con-
sideration is that, under some security/fault tolerance
models, a compute node’s output should contain ad-
ditional check values that allow discrepancy detection
to verify that all the appropriate processing occurred
in that compute node.
Such verifications are not necessary with TEE-

based ParaTime nodes: the TEE model provides re-
mote attestation of code identity, and this makes code
modifications easily detected. These verifications are
also not necessary under the standard Byzantine fault
tolerance model where nodes are either Byzantine or
honest, but is required under the Byzantine/Altruis-
tic/Rational (BAR) model [3], where rational actors
take actions based on their self interest, so will behave
honestly or lie, depending on economic incentives.
Let us look at a concrete example.
While executing transactions, the compute commit-

tee nodes must read and write untrusted external
transactional persistent storage. While mathemati-
cally we require the verification of read proofs and
write proofs (e.g., checking peer hashes in a Merk-
lized data structures) to know that the read/write

operations were done correctly, a rational actor may
replace the proof verification code with code that by-
passes the proof verification in an effort to improve
performance.

We would like to ensure that this undesirable—but
rational—behavior is detected. Otherwise, we create
a situation where we may have a committee of ratio-
nal nodes, none of which would detect misbehaving
storage nodes! To incentivize verification, we use the
following ideas to leverage discrepancy detection:

• Proof verification of authenticated data struc-
tures requires computing cryptographic hashes,
e.g., the hash of a subtree in an n-ary tree is the
hash of the hash values of its children. These re-
quired hash computation is much more expensive
than the comparisons needed to check whether
the result is correct.

• We can ensure that the internal hash values are
computed by including them and any other inter-
mediate result—or a summary thereof—as part
of the output of the computation as auxilliary
data.

• Discrepancy detection compares the outputs of
all replicas. Thus, if there is at least one honest
node that will correctly compute this auxilliary
output, then any node that did not will be de-
tected.

Note that even if the storage queries were to obtain
results from a cache, rather than from the storage
servers, the cache should either verify the proof—and
provide an interface to provide the intermediate values
goes into the verification along with the answer—or
make it the responsibility of the cache client to verify
the proofs and generate those intermediate value itself.
The cached data should enable the cache to generate
the same proofs as would be generated by the storage
servers.

How do we compute this auxilliary information that
proves that most of the expensive verification steps
were done? We require that the intermediate expen-
sive hash outputs (hashes associated with internal
nodes) computed during storage proof checking will
themselves be used as the input to another hash func-
tion. This hash function does not have to be crypto-
graphic in nature, but instead can be universal hash-
ing [14], which we will denote hr(âux): the compute
nodes can be given the (random r) choice of a hash
function which will be given all of the intermediate
values as input. Because this is not a collision resis-
tant cryptographic hash function, its computation is

19

much cheaper.9 The result of this hash is, however,
unpredictable without first finding its inputs.

A compute node could compute the auxilliary out-
put without actually doing the full verification, i.e.,
it could omit the actual comparisons that check the
hash values against what was expected, even though it
computes hr(âux). This, however, seems unlikely, since
the comparisons are extremely cheap compared to the
cost of the cryptographic hash value computation—
the savings would be negligible.
To fully close the gap, we could require stor-

age nodes, under the control of a secure, determin-
9The cost of universal hashing is similar to that of polyno-

mial reduction used to compute error correction codes (ECC).

istic pseudorandom number generator, to issue bogus
proofs with some (low) probability. This introduces a
pipeline hazard/bubble, since the storage clients must
(1) detect the bogus proof (and potentially earn a re-
ward), and (2) perform another remote procedure call
to send a signed reply saying the proof was either
accepted or rejected, and, if rejected, get the correct
proof. Fortunately, since the expected gain in perfor-
mance for omitting the hash comparison(s) needed
to check the storage proofs is extremely low and not
detecting the bogus proof results in slashing, the fre-
quency of bogus proof injection can be very low. We
do not currently implement bogus proof injection.

20

	Introduction
	Design Goals and Principles
	Goals
	Principles

	Architecture
	Architecture Overview
	Consensus Layer
	Consensus–ParaTime Interface
	ParaTime Layer
	Key Manager

	Discrepancy Detection
	Parallel Runtimes
	Private Computation Runtime
	TEE Security Model
	TEE Vulnerabilities
	State Rollback
	Side-Channel Attack Mitigation

	Non-confidential Computation Runtime
	Smart Contract APIs

	Key Managers
	ParaTime Key Manager
	Application Splitting
	Replication

	Potential Future Key Manager Features
	Access Controls and Rate Limiting
	Proactive Secret Sharing
	Smart Contract State Re-encryption

	Conclusion
	Discrepancy Detection
	Overview
	Adversarial Work Factor
	Security of Byzantine Fault Tolerant Protocols
	Probabilistic Committee Security

	Security Analysis
	Adversary Costs
	Adaptive Adversary
	Tolerating Slow Workers
	Safety Margins

	Non-Adaptive Adversary
	Verifying Verification

